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We study a transition to a glassy phase of neutral atoms trapped in optical lattice, where the system is 
realized as the array of individual Bose–Einstein condensates of N elongated vertical and horizontal N
rods in a wood-pile form coupled via the random Josephson tunneling. In this geometry every horizontal 
(vertical) rod of a condensate is linked to its vertical (horizontal) counterpart, so that the number of 
nearest neighbors z of a given rod in this system is z = N , implying that the system is fully connected. 
This together with randomness forms a prerequisite of the Sherrington–Kirkpatrick model for N → ∞
widely employed in the theory of spin glasses. For this arrangement we solve a model Hamiltonian of 
the Josephson array in the thermodynamic limit (N → ∞) and calculate the critical temperature for the 
glassy phase-locking transition, caused by the Josephson tunneling of bosons in random environment.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Systems which exhibit the so-called glassy phases constitute 
the major attempt of the solid-state physics to address the is-
sue of collective disorder. The importance of these systems re-
sults not only from the need to understanding particular materi-
als. Rather, it is believed that the glassy ordering is of a qualita-
tively new kind, prototypical for a large class of random arrange-
ments which go well beyond solid state physics. Systems which 
show spin-glass behavior have been intensively investigated theo-
retically, usually by employing massive numerical simulations [1]. 
Thus, it has proved extremely useful to consider the celebrated 
example of infinite-range Sherrington–Kirkpatrick (SK) model [2]
as an archetypical system in spin glass theory, where an analyt-
ical approach was feasible. In the context of interacting bosons 
the influence of the diagonal disorder in quantum many-body sys-
tems is known giving rise to novel quantum glassy phases [3]. 
More recently, since the first experimental realizations of Bose–
Einstein condensate (BEC) [4,5], quantum cold atomic gases have 
attracted physicists as ideal benchmark systems for testing of the-
oretical quantum statistical phenomena. Furthermore, atomic gases 
confined in magneto-optical traps have opened a new way for the 
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study of strong correlated systems with unprecedented experimen-
tal control over physical parameters in these systems. For example, 
systems with strongly interactions can be set up using cold neutral 
atomic gases in optical lattices [6–8], which form periodic struc-
ture composed of micro-traps produced by standing wave laser 
beams. In contrast to the homogeneous trapped systems, optical 
lattices offer additional features regarding the degree of control 
over the physical parameters. Thus, physical properties of cold 
atoms can be studied e.g. as a function of a variety of physical 
parameters including: on-site inter-atomic interactions, tunneling 
amplitudes between adjacent sites, atom filling numbers as well 
as lattice dimensionality [9]. Furthermore, disorder can be gener-
ated in optical lattice systems by exposure to speckle lasers [10,
11], incommensurate lattice-forming lasers [12–14], and by other 
methods [15]. Remarkably, while the effects of potential disorder 
have been widely investigated, other kinds of randomness, as for 
example the off-diagonal one, which affects hopping or interaction 
strengths, have remained unexplored.

By coupling of two BEC systems together, a weak link forms 
between them producing the so called Josephson junction [16]. 
This gives rise to a variety of phenomena as a result of the associ-
ated conjugate observables: number of bosons and their quantum-
mechanical phase. For example, Josephson dynamics have been 
observed between weakly coupled macroscopic wave functions 
in Bose–Einstein condensates trapped in double well potentials 
[17–19]. Recent experiments have led to the creation of Joseph-
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Fig. 1. Array of elongated Bose–Einstein condensates in wood-pile geometry: the 
arrangement of N vertical (v) and horizontal (h) elongated condensates mutually 
coupled via the random Josephson tunneling at each intersection.

son junction arrays based on the atomic BEC, where the atoms 
in a harmonic trap were additionally confined by an optical lat-
tice potential, produced by far-detuned laser beams [20–23]. In the 
present work we will study a transition to a glassy phase of neu-
tral atoms trapped in optical lattice, where the system is realized 
in a form of the array of individual Bose–Einstein condensates of 
N elongated vertical and horizontal rods in a wood-pile geome-
try mutually coupled via the random Josephson tunneling. In this 
geometry every horizontal (vertical) rod of a given condensate is 
linked to its vertical (horizontal) counterpart, so that the number 
of nearest neighbors z of a given rod in this system is equal to the 
number of condensate rods (z = N), implying that the system is 
fully connected. This feature together with superimposed random-
ness forms a prerequisite of the Sherrington–Kirkpatrick model for 
N → ∞ widely known from the theory of spin glasses. For this 
arrangement we solve a model Hamiltonian of the Josephson ar-
ray in the thermodynamic limit (N → ∞) and calculate the critical 
temperature for the glassy phase-locking transition, caused by the 
Josephson tunneling of bosons in random environment. Our study 
of the disordered Josephson coupled condensates is motivated by 
the fact that these effects constitute experimentally testable sig-
natures of the competition of disorder and phase coherence in 
superfluid systems [24].

2. The model with random Josephson couplings

For array of weakly coupled condensates with wood-pile geom-
etry (see, Fig. 1), the Hamiltonian written in terms of the wave 
functions of the individual vertical (v) and horizontal (h) rods of 
Bose condensates takes the form [25]

H({J��′ }) = −
N∑

�=1

N∑
�′=1

J��′
(
ψ�

v�ψh�′ + ψ�
h�′ψv�

) +

ε

N∑
�=1

(
|ψv�|2 + |ψh�|2

)
+ U

2

∑
�

(
|ψv�|4 + |ψh�|4

)
, (1)

where ψα� is the complex wave function amplitude for the 
α-condensate in the α� rod (α = v, h) located at the sites labeled 
by �. Since each horizontal (vertical) condensate rod of the system 
is directly coupled to every other filament in the wood pile geom-
etry the number of nearest neighbors z is z = N , where N stands 
for the number of rods in the upper (lower) plane of the system. 
The first term in the Hamiltonian in Eq. (1) contains the Joseph-
son amplitude J��′ and describes the tunneling of bosons between 
neighboring condensates, which we assume to be a random vari-
able. As a result of the geometry involved the interactions J��′ are 

infinite range in the limit N → ∞, since the system is fully con-
nected. To be specific we consider the Gaussian distribution with 
zero mean and the variance J/

√
N given by

P ({J��′ }) =
√

N

2π J
exp

(
− NJ 2

��′
2 J

)
. (2)

Finally, the parameter U quantifies the on-site interaction energy, 
while ε describes the mean value of the trapping potential.

3. Disorder average and glassy phase order parameter

In the following we deal with the case where the disorder is as-
sumed to be quenched. In this case that the variables J��′ remain 
fixed while the U(1) phases of the wave functions of the indi-
vidual condensates fluctuate. From an experimental point of view, 
this corresponds to a situation where the dynamical time scale of 
the disorder (e.g. the Josephson couplings between condensates) 
is much longer than the dynamical time scale of the phase fluc-
tuations. Averages with respect to the probability distribution in 
Eq. (2) are defined through

[. . .] J =
∫ ∏

��′
dJ��′ P (J��′) . . . . (3)

For example the distribution in Eq. (2), being Gaussian, is com-
pletely specified by its mean and standard deviation

[J��′ ] J = 0,
[
J 2

��′
]

J
= J 2/N. (4)

We would like to calculate the disorder-averaged free energy, 
which encodes all thermodynamic properties of this model

f J ≡ [ f ({J��′ })] J =
∫ ∏

��′
dJ��′ P (J��′) f ({J��′ }). (5)

The disorder dependent free-energy density is given by

f ({J��′ }) = lim
N→∞

F ({J��′ })
N

,

F ({J��′ }) = − 1

β
ln Z({J��′ }) (6)

where β = 1/kB T with T being the temperature. Furthermore,

Z({J��′ }) =
∫ N∏

�=1

d2ψv�d2ψh�e−βH (7)

is the statistical sum, where d2ψα� = d[�eψα�]d[	mψα�], (α =
v, h).

At certain finite temperature a new state eventually take place, 
which is marked by the competing effects of thermally driven 
phase fluctuations of individual condensates composing the sys-
tem and phase locking due to random Josephson tunnel coupling 
with the freezing of U(1) phases of condensates into the disordered 
ground state. This new state is signaled by the non-zero value of 
the Edwards–Anderson glass order parameter defined by [1]

qEA =
[〈

|ψα�|2
〉

T

]
J

(8)

where

〈. . .〉T = 1

Z

∫ N∏
�=1

d2ψv�d2ψh� . . . e−βH . (9)

As we already mentioned, because of the unique feature of the 
wood-pile geometry the number of nearest neighbors z in this 
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