
Information and Software Technology 78 (2016) 1–26 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

An incremental method for extracting tests from object-oriented 

specification 

M. Ghoreshi, H. Haghighi ∗

Faculty of Computer Science and Engineering, Shahid Beheshti University G. C., Tehran, Iran 

a r t i c l e i n f o 

Article history: 

Received 4 January 2016 

Revised 11 May 2016 

Accepted 13 May 2016 

Available online 26 May 2016 

Keywords: 

Test case generation 

Formal specification 

Specification-based testing 

Object orientation 

Object-Z 

a b s t r a c t 

Context: The nature of the object-oriented development process is iterative and incremental, and through 

this process, software artifacts are refined and evolved continuously; however, most of proposed methods 

for deriving test cases from formal, object-oriented specifications have been adapted from previous struc- 

tural techniques and are not aligned with such an incremental process. These methods are not adaptive 

with changes in the software specification, and there is no mechanism to evolve test artifacts respectively. 

Moreover, the existing methods do not cover all different object-oriented testing levels, i.e., intra-method, 

inter-method, intra-class and inter-class levels. 

Objective: This paper presents an incremental method for extracting tests from formal, object-oriented 

specifications. Extracted tests are adaptive with changes in the class specification. In addition, the pro- 

posed method covers all different object-oriented testing levels. 

Method: We first make a test machine (as a new notion introduced in this paper) for each class operation 

to cover the intra-method test level. With the combination of these test machines, new test machines 

covering the inter-method and intra-class test levels can be made. Extracted tests can be easily modified 

when the class specification is modified, and, in this way, our approach enables iterative and incremental 

test derivation. With test machines corresponding to a class hierarchy, this approach can also be used for 

deriving inter-class tests. 

Results: As a case study, we applied our method to the specification of a computer game. Results indicate 

that test machines can incrementally be extracted through a class hierarchy, and a parent test machine 

can be used to obtain its corresponding child test machines (by reusing test artifacts). Furthermore, by 

running extracted test cases on the implemented game, we discovered some real bugs. 

Conclusion: The proposed approach can incrementally extract tests and bring extendibility and reusability 

as two main advantages of the object- oriented paradigm to the test domain. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The nature of the object-oriented development process is itera- 

tive and incremental [1] . There are popular object-oriented analysis 

and design (OOAD) approaches for analyzing, designing and imple- 

menting a software system; through such approaches, iteration by 

iteration, the software artifacts will be refined continuously. Thus, 

as Bier says in [1] , this iterative and incremental nature is well- 

suited to the test activity as we proceed in the development pro- 

cess. We should start testing as early as we can through the object- 

oriented development life cycle and refine the tests during the de- 

velopment process. Test cases can be extracted early in the pro- 

cess, even as requirements are being determined or changed; thus, 

∗ Corresponding author.. 

E-mail address: h_haghighi@sbu.ac.ir (H. Haghighi). 

faults can be detected early in the development process, saving 

time, money, and effort [1] . 

Moreover, object-oriented programming languages and con- 

cepts can lead to different types of errors raising the need to dif- 

ferent approaches of testing [1] ; even typical features of object- 

oriented languages (like message passing and encapsulation) are 

complex and therefore error-prone [1,2] . Concepts such as in- 

heritance, polymorphism and dynamic binding can lead to data 

anomalies and failures which cannot be found by traditional test- 

ing techniques effectively [3,4] ; to read more about these new 

types of data anomalies, refer to [5] . To discover such failures, we 

must extract tests which cover all different object-oriented testing 

levels, i.e., intra-method, inter-method, intra-class and inter-class 

levels. 

Specification-based testing means extracting test cases from 

specifications rather than implementations. In specification-based 

testing, the test process can be started in an early stage of the 

http://dx.doi.org/10.1016/j.infsof.2016.05.005 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.05.005&domain=pdf
mailto:h_haghighi@sbu.ac.ir
http://dx.doi.org/10.1016/j.infsof.2016.05.005


2 M. Ghoreshi, H. Haghighi / Information and Software Technology 78 (2016) 1–26 

software development life cycle that allows more effective plan- 

ning and utilization of resources [6] . Moreover, formal specifi- 

cations can help in automating the test activity [6] . Although 

fully formal development methods are generally less popular and 

more used for the development of critical systems, even tiny for- 

mal specifications of important system modules can lead to great 

achievements. One of these achievements is the automated extrac- 

tion of test cases in the early stages of the system development 

which reduces the cost of testing significantly [6] . Test oracles can 

be generated from formal specifications automatically [7] . Formal 

specification based oracles address all the oracle automation chal- 

lenges [7] and are appropriate solutions to the oracle problem [3] . 

Most of the existing methods for extracting test cases based 

on formal, object-oriented specifications have been adapted from 

previous structural techniques and have not originally been pre- 

sented for the object-oriented paradigm; therefore, they do not 

treat an object-oriented specification as an extendible and mod- 

ifiable artifact through the object-oriented development process. 

Hence, there is no formal specification based test case generation 

method which can be effectively applicable through the incremen- 

tal and iterative development process. More precisely, there is no 

method for deriving initial test artifacts based on formal specifica- 

tions and then evolving these test artifacts based on the evolution 

of specifications. 

The object-oriented paradigm relies heavily on the reusability 

concepts; examples are the inheritance mechanism in code and 

techniques for reusing design artifacts to save effort through the 

object-oriented development. But existing testing approaches do 

not use reusability opportunities in order to save cost and time 

through the testing phase. One of such opportunities is reusing 

parent class tests to test child classes through inheritance. 

Although a tiny formal specification or formal model of an 

object-oriented software can support the testing approach to un- 

cover some inter-class failures, most existing approaches do not 

use this opportunity and do not address data anomalies and fail- 

ures which occur due to special object-oriented concepts (such as 

polymorphism and dynamic binding), and thus, cannot effectively 

be found by traditional testing techniques. 

The main limitations of existing approaches can be summarized 

as the following list: 

1. There is no method which can be applicable and adaptable 

through the incremental and iterative object-oriented devel- 

opment process. Such a method should be flexible against 

changes in software specifications and software models, and 

should provide a mechanism to evolve test artifacts when 

related artifacts evolve. 

2. The lack of a comprehensive solution that covers all different 

object-oriented testing levels including intra-method, inter- 

method, intra-class and inter-class levels. 

3. The lack of a solution which supports opportunities to reuse 

test artifacts through the object-oriented development pro- 

cess. A well-known opportunity is reusing test cases from 

ancestor classes to test descendant classes. To the best of 

our knowledge, only one work [11] concerns this opportu- 

nity, but this work reuses just some basic test information 

form parent classes only in special circumstances. With this 

inherited test information, we still need much effort to ob- 

tain actual tests which means this work does not have a tan- 

gible impact on the testing cost reduction. 

4. The lack of effective test cases dealing with issues of inheri- 

tance, polymorphism and dynamic binding which have con- 

siderable potential for data anomalies and failures; although 

there are a few methods (to the best of our knowledge, only 

three works [8,9] and [10] ) that deal with polymorphism 

and dynamic binding issues, they only address some basic 

aspects of the polymorphism issues. 

5. In addition, few existing methods have been described in an 

algorithmic manner and with sufficient details needed for 

automation, while one of the major advantages that come 

from specification-based testing is the potential for automa- 

tion. 

Focusing on issues 1 and 2, this paper presents a new incre- 

mental method to extract test cases for all different object-oriented 

testing levels based on formal, object-oriented specifications writ- 

ten in Object-Z. Of course, the proposed method does not rely sub- 

stantially on a particular formal, object-oriented specification lan- 

guage, or in other words, one can apply it to other formal meth- 

ods (like JML specification in java or even formal graphical models 

like UML/OCL or UML-B) with minor modifications. For each op- 

eration of a class, we make a kind of finite state machine (FSM) 

that is called “test machine” and addresses the intra-method test 

level; then, with incremental combination of these test machines, 

we make a test machine for a class that covers inter-method and 

intra-class test levels. For extracting a test machine for a class, we 

introduce three algorithms: one for extracting test machines for 

individual operations. The other two algorithms work together to 

combine the resulting test machines. With this algorithmic presen- 

tation, we address the issue number 5 from the above issue list. 

Addressing the issue number 1, our incremental approach 

brings extendibility [12] from the object-oriented domain to the 

test domain. A test machines obtained by our incremental ap- 

proach can be easily adapted when the class specification is mod- 

ified (for example, in case of operation modification, operation 

deletion, operation addition, class state variables addition and so 

on). This incremental nature can make our approach appropriate 

for using through incremental and iterative object-oriented de- 

velopment methodologies. This also makes it possible to reuse 

an extracted test-machine through the object-oriented inheritance 

mechanism. We mention how to use the proposed approach for 

easily extracting a test machine for a child class directly from the 

test machine of its parent class; with this, we address the is- 

sue number 3 and bring the inheritance concept from the object- 

oriented paradigm to the test domain. 

Regarding the issue number 4, although a test machine for a 

class covers intra-class tests, we state how to use the proposed 

approach to extract test cases for some inter-class tests that deal 

with polymorphism and dynamic binding issues. Due to the space 

limitation, in this paper, we tackle issues 1, 2, and 5, and concen- 

trate on the primary aspects of our approach and only present an 

overall view of its application regarding inheritance and polymor- 

phism. The details of the application of our approach to inheri- 

tance, polymorphism, and dynamic binding issues with sufficient 

examples will be presented in the future work. 

The paper is organized as follows. Section 2 reviews the 

related works. Section 3 provides some background notions. 

Section 4 presents our incremental method for extracting test 

cases. Section 5 briefly describes how to use the proposed method 

in the presence of inheritance (in order to reuse existing tests) 

and how to deal with polymorphism and dynamic binding issues. 

Section 6 is devoted to the evaluation of the proposed method. And 

finally, Section 7 concludes the paper. 

2. Related work 

Dick and Faivre [14] proposed an approach to convert VDM ex- 

pressions into a disjunctive normal form (DNF) by which a do- 

main space partitioning to derive test requirements can be done. 

One of the advantages of this approach is providing a potential 

for automation. Although the approach is for non-object-oriented 



Download English Version:

https://daneshyari.com/en/article/549707

Download Persian Version:

https://daneshyari.com/article/549707

Daneshyari.com

https://daneshyari.com/en/article/549707
https://daneshyari.com/article/549707
https://daneshyari.com

