Accepted Manuscript

Fully reconfigurable terahertz devices enabled by T-shaped graphene two-parallel-sheet

Han Ren, Jun Ding, Bayaner Arigong, Mi Zhou, Yuankun Lin, Hualiang Zhang

PII: S0375-9601(16)31429-3

DOI: http://dx.doi.org/10.1016/j.physleta.2016.10.040

Reference: PLA 24150

To appear in: Physics Letters A

Received date: 23 March 2016 Revised date: 19 October 2016 Accepted date: 22 October 2016

Please cite this article in press as: H. Ren et al., Fully reconfigurable terahertz devices enabled by T-shaped graphene two-parallel-sheet, *Phys. Lett. A* (2016), http://dx.doi.org/10.1016/j.physleta.2016.10.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- Tunable terahertz devices are achieved by a T-shaped graphene two-parallel-sheet.
- Electrical length and characteristic impedance of the THz waveguide can be tuned.
- Waveguide can be tuned by the bias voltage on the top and bottom graphene sheets.
- The simulation results verify the large tuning range and multifunction.

Download English Version:

https://daneshyari.com/en/article/5497070

Download Persian Version:

https://daneshyari.com/article/5497070

Daneshyari.com