
Information and Software Technology 78 (2016) 27–52

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Assessing fine-grained feature dependencies

Iran Rodrigues a , ∗, Márcio Ribeiro

a , Flávio Medeiros c , Paulo Borba

b , Baldoino Fonseca

a ,
Rohit Gheyi c

a Federal University of Alagoas, Maceió, Brazil
b Federal University of Pernambuco, Recife, Brazil
c Federal University of Campina Grande,Campina Grande, Brazil

a r t i c l e i n f o

Article history:

Received 9 August 2015

Revised 18 May 2016

Accepted 23 May 2016

Available online 24 May 2016

Keywords:

Preprocessor

Software family

Feature dependency

a b s t r a c t

Context: Maintaining software families is not a trivial task. Developers commonly introduce bugs when

they do not consider existing dependencies among features. When such implementations share program

elements, such as variables and functions, inadvertently using these elements may result in bugs. In this

context, previous work focuses only on the occurrence of intraprocedural dependencies, that is, when

features share program elements within a function. But at the same time, we still lack studies investi-

gating dependencies that transcend the boundaries of a function, since these cases might cause bugs as

well.

Objective: This work assesses to what extent feature dependencies exist in actual software families, an-

swering research questions regarding the occurrence of intraprocedural, global, and interprocedural de-

pendencies and their characteristics.

Method: We perform an empirical study covering 40 software families of different domains and sizes. We

use a variability-aware parser to analyze families source code while retaining all variability information.

Results: Intraprocedural and interprocedural feature dependencies are common in the families we ana-

lyze: more than half of functions with preprocessor directives have intraprocedural dependencies, while

over a quarter of all functions have interprocedural dependencies. The median depth of interprocedural

dependencies is 9.

Conclusion: Given these dependencies are rather common, there is a need for tools and techniques to raise

developers awareness in order to minimize or avoid problems when maintaining code in the presence of

such dependencies. Problems regarding interprocedural dependencies with high depths might be harder

to detect and fix.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Developers commonly introduce errors when they fail to rec-

ognize dependencies among the software modules they are main-

taining [1] . The same situation happens in configurable systems in

terms of program families and product lines, where features share

program elements such as variables and functions. This way, fea-

tures might depend on each other and developers can miss such

dependencies as well. Consequently, by maintaining one feature

implementation, they might introduce problems to another, like

∗ Corresponding author.

E-mail addresses: irgj@ic.ufal.br , iran@iranrodrigues.com.br (I. Rodrigues),

marcio@ic.ufal.br (M. Ribeiro), flaviomedeiros@copin.ufcg.edu.br (F. Medeiros),

phmb@cin.ufpe.br (P. Borba), baldoino@ic.ufal.br (B. Fonseca), rohit@dsc.ufcg.edu.br

(R. Gheyi).

when assigning a new value to a variable which is correct to the

feature under maintenance, but incorrect to the one that uses this

variable [2,3] .

In this context, developers often use the C preprocessor to

implement variability in software families [4–7] . The C prepro-

cessor allows the use of directives to annotate the code, asso-

ciating program elements with specific features. When a devel-

oper defines a variable in a feature and then uses it in another

feature, we have a feature dependency. The same happens with

functions.

Previous work [8] reports on how often feature dependencies

occur in practice by considering 43 preprocessor-based families

and product lines. However, the study focuses only on intrapro-

cedural dependencies, that is, feature dependencies that occur ex-

clusively within the function boundaries. Nevertheless, dependen-

cies that go beyond function boundaries might be harder to detect.

http://dx.doi.org/10.1016/j.infsof.2016.05.006

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.05.006&domain=pdf
mailto:irgj@ic.ufal.br
mailto:iran@iranrodrigues.com.br
mailto:marcio@ic.ufal.br
mailto:flaviomedeiros@copin.ufcg.edu.br
mailto:phmb@cin.ufpe.br
mailto:baldoino@ic.ufal.br
mailto:rohit@dsc.ufcg.edu.br
http://dx.doi.org/10.1016/j.infsof.2016.05.006

28 I. Rodrigues et al. / Information and Software Technology 78 (2016) 27–52

Despite important, we still lack a study that takes other kinds of

feature dependencies into account.

Therefore, to minimize these lack and better understand fea-

ture dependencies, in this work we perform an empirical study to

assess to what extent feature dependencies occur in practice, iden-

tifying their characteristics and frequency. We also compare some

of our results with results from previous work [8] .

Before executing this study, as a first step, we arbitrarily ana-

lyze several bug reports from many open-source software families,

like GCC , 1 GNOME , 2 and Linux kernel. 3 The idea of this first step

is to learn how configuration-related bugs happen in such families

and better prepare our study. After finding examples of bugs re-

lated to feature dependencies, we conduct an empirical study that

complements previous work on this topic, in the sense that we

take interprocedural dependencies into account. Notice that, dur-

ing maintenance of preprocessor-based software, these dependen-

cies are even harder to detect: one feature might use data from

another and they are in different functions. Because in a typical

system we have several method calls passing data, we also com-

pute the depth of such dependencies (from the variable defini-

tion to its use). In addition, we consider dependencies based on

global variables. We also compute the dependency direction, that

is, mandatory-to-optional, optional-to-mandatory, and optional-to-

optional. A mandatory-to-optional dependency, for instance, means

that the definition of the program element (for instance, a global

variable) happens in a mandatory feature—that is, no #ifdef en-

compassing the definition—and its use in an optional feature. In

particular, we answer the following research questions: How often

do program families contain intraprocedural dependencies? How

often do program families contain global dependencies? How often

do program families contain interprocedural dependencies? How

often do dependencies of different directions occur in practice?

What is the dependency depth distribution for interprocedural de-

pendencies? How the results of the current study compare with

the previous ones? Answering these questions is important to bet-

ter understand feature dependencies and assess their occurrence in

practice.

To answer our research questions, our study covers 40 C pro-

gram families of different domains and sizes. We select these fam-

ilies inspired by previous work [6–11] . We rely on TypeChef [12] , a

variability-aware parser, to compute feature dependencies consid-

ering the entire configuration space of each source file of the fam-

ilies we analyze. To detect dependencies that span multiple files,

we perform global analysis (instead of per-file analysis).

The data we collect in our empirical study reveal that the fea-

ture dependencies we consider in this work are reasonably com-

mon in practice, except the ones regarding global variables. Fol-

lowing the convention “average ± standard deviation”, our results

show that 51.44% ± 17.77% of functions with preprocessor direc-

tives have intraprocedural dependencies, 11.90% ± 12.20% of the

functions which use global variables have global dependencies,

while 25.98% ± 19.99% of all functions have interprocedural de-

pendencies.

In summary, the main contributions of this paper are:

• data on feature dependency that reveal to what extent they are

common in practice, complementing previous work by consid-

ering new types of dependencies;

• a strategy to compute feature dependencies based on the Type-

Chef variability parser.

We organize the remainder of this paper as follows. In

Section 2 we introduce the concept of feature dependency. Next, in

1 https://gcc.gnu.org/bugzilla/ .
2 https://bugzilla.gnome.org/ .
3 https://bugzilla.kernel.org/ .

1. #ifdef A
2. int x;
3. #endif
4. …
5. #ifdef B
6. x++;
7. #endif

Fig. 1. Example of a feature dependency regarding variable x .

Section 3 we show motivating examples that illustrate variability

bugs from industrial systems. Then, we present the empirical study

settings in Section 4 . After, in Section 5 we present and discuss the

results. Later, in Section 6 we present some consequences of our

work. In Section 7 we discuss the related work and in Section 8 we

present the final considerations of this work.

This paper is an extension of our previous work [8] on feature

dependency analysis. In this work we bring more evidence regard-

ing bugs related to intraprocedural feature dependencies. Com-

pared to the previous study, we analyze new families and use a dif-

ferent tool, improving its external validity. Moreover, we now take

global and interprocedural dependencies into account, presenting

bugs related to such types of dependencies and computing data

regarding their presence in a set of industrial software families.

2. Feature dependency

A program family consists of a set of programs that share a

common core but also have distinguishing functionalities. These

commonalities and variabilities are often modeled as features, each

representing increments in functionality to the program. Each fea-

ture provides a potential configuration option, so developers can

generate different programs tailored for specific tasks or platforms.

When we consider program families written in C, developers of-

ten use the C preprocessor (cpp) to implement variability in those

systems [4–7] .

The C preprocessor allows the use of conditional compilation

directives such as #if or #ifdef along with a macro expres-

sion to surround feature-specific fragments of code. Macro expres-

sions might contain one or more macros as a boolean formula,

as in #if defined(A) && defined(B) , which might refer to

specific configuration options. The minimum subset of features in

which a fragment of code is included in the conditional compila-

tion is called presence condition [13] . Developers can use preproces-

sor directives to wrap from entire structures such as functions to

part of a statement such as a single variable, allowing variability in

different levels of granularity. This flexibility also allows code from

a single feature to be scattered all over the program.

Often features communicate and collaborate with each other,

so their implementations might share program elements and data.

When different features refer to the same program element, such

as a variable, we have a feature dependency. Following the classifi-

cation proposed by Apel et al. [14] , such feature dependencies we

consider in this paper are operational feature interactions, since a

feature pass data to another one.

To better explain this concept, we refer to the code snippet in

Fig. 1 . In the figure, the definition of variable x (see line 2) is inside

an #ifdef block, associated to the macro expression A (see line

1). In practice, not all macros in a macro expression correspond to

actual features in a broader sense. However, since feature models

are not always available, and for the sake of simplicity, in this work

we consider that each macro in a macro expression refers to a dif-

ferent feature. That said, we consider that the definition of x is in

a code fragment of feature A . Likewise, x is later incremented (see

line 6) in a code fragment of feature B (see line 5). This means that

the definition of x will be included in the compilation if and only

https://gcc.gnu.org/bugzilla/
https://bugzilla.gnome.org/
https://bugzilla.kernel.org/

Download English Version:

https://daneshyari.com/en/article/549708

Download Persian Version:

https://daneshyari.com/article/549708

Daneshyari.com

https://daneshyari.com/en/article/549708
https://daneshyari.com/article/549708
https://daneshyari.com

