
Information and Software Technology 78 (2016) 66–82 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Tester interactivity makes a difference in search-based software 

testing: A controlled experiment 

Bogdan Marculescu 

a , ∗, Simon Poulding 

a , Robert Feldt a , Kai Petersen 

a , Richard Torkar b 

a Blekinge Institute of Technology, Karlskrona, Sweden 
b Chalmers and the University of Gothenburg, Gothenburg, Sweden 

a r t i c l e i n f o 

Article history: 

Received 11 December 2015 

Revised 2 May 2016 

Accepted 30 May 2016 

Available online 31 May 2016 

Keywords: 

Search-based software testing 

Interactive search-based software testing 

Controlled experiment 

a b s t r a c t 

Context: Search-based software testing promises to provide users with the ability to generate high quality 

test cases, and hence increase product quality, with a minimal increase in the time and effort required. 

The development of the Interactive Search-Based Software Testing (ISBST) system was motivated by a 

previous study to investigate the application of search-based software testing (SBST) in an industrial set- 

ting. ISBST allows users to interact with the underlying SBST system, guiding the search and assessing the 

results. An industrial evaluation indicated that the ISBST system could find test cases that are not created 

by testers employing manual techniques. The validity of the evaluation was threatened, however, by the 

low number of participants. 

Objective: This paper presents a follow-up study, to provide a more rigorous evaluation of the ISBST 

system. 

Method: To assess the ISBST system a two-way crossover controlled experiment was conducted with 58 

students taking a Verification and Validation course. The NASA Task Load Index (NASA-TLX) is used to 

assess the workload experienced by the participants in the experiment. 

Results: The experimental results validated the hypothesis that the ISBST system generates test cases that 

are not found by the same participants employing manual testing techniques. A follow-up laboratory 

experiment also investigates the importance of interaction in obtaining the results. 

In addition to this main result, the subjective workload was assessed for each participant by means of 

the NASA-TLX tool. The evaluation showed that, while the ISBST system required more effort from the 

participants, they achieved the same performance. 

Conclusions: The paper provides evidence that the ISBST system develops test cases that are not found 

by manual techniques, and that interaction plays an important role in achieving that result. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Software testing plays a crucial role in increasing the quality 

of software systems, as well as the perceived quality of and confi- 

dence in such systems. One software testing technique is the ap- 

plication of metaheuristic optimization algorithms to generate test 

data, known as Search-Based Software Testing (SBST) [1,2] . 

In a previous study [3] , we have proposed a system that would 

allow successful application of SBST in an industrial context. This 

system, called the Interactive Search-Based Software Testing (IS- 

BST) tool, facilitated the use of domain knowledge existing in the 

∗ Corresponding author. 

E-mail address: bogdan.marculescu@bth.se (B. Marculescu). 

company to improve the search process. This was achieved by al- 

lowing human testers to interact with the system and guide the 

evolution of the search-based solutions. The interaction was in- 

spired by work in Interactive Evolutionary Computation [4–8] , and 

was designed to allow the testers to make their contribution, with- 

out having to deal with the complexity of the underlying SBST sys- 

tem. 

Previous work [9] focused on successfully applying ISBST in an 

industrial context, and determining what were the important fac- 

tors that enabled successful application. One of the findings of that 

study was that the ISBST tool developed test cases that were quite 

different from those obtained by means of manual techniques. 

However, the evaluation was conducted with a low number of 

http://dx.doi.org/10.1016/j.infsof.2016.05.009 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.05.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.05.009&domain=pdf
mailto:bogdan.marculescu@bth.se
http://dx.doi.org/10.1016/j.infsof.2016.05.009


B. Marculescu et al. / Information and Software Technology 78 (2016) 66–82 67 

participants and in a context specific to our industrial partner, thus 

making it difficult to draw conclusions about the ISBST. 

This study validates those findings, by conducting a large, con- 

trolled experiment, comparing the test cases developed using the 

ISBST system with those developed using a manual black-box tech- 

nique. The experiment was conducted with 58 software engineer- 

ing students, participants in a software Verification and Validation 

course at the master level. By selecting a more general SUT, in this 

case a clustering algorithm that is not tied to a particular problem 

domain or company, we can increase the level of confidence in the 

generalizability of our method. Master’s students are a good choice 

of participant, as they are not likely to be influenced by the biases 

and assumptions inherent in any domain, and more will have the 

time and willingness to participate in an experiment. 

The experiment provides evidence that the automated system, 

represented by the ISBST tool, develops different test cases from 

the manual method. A follow-up computer-based experiment also 

provides evidence for the role of interaction in obtaining the re- 

sults. By isolating the interaction strategy and comparing against 

the same search-based system without the benefit of interaction, 

we were able to provide evidence that interaction plays a signifi- 

cant role in the results obtained by the ISBST tool. 

The contributions of this paper are as follows: 

• Comparing test cases developed by the ISBST system and those 

developed by manual exploratory testing, to identify differences 

and similarities between them, and to determine whether or 

not they investigate the same type of SUT behavior. 

• Assessing the effect of the interaction component of the ISBST 

system on the outcome of the search. 

• Widening the application of the ISBST system to a completely 

new type of System under Test (SUT), part of a different do- 

main. 

• Evaluating the ISBST system on a wider set of participants, in a 

controlled environment. 

Section 2 describes existing work on evolutionary approaches 

and search-based software testing and discusses the context of 

the current approach, as well as providing a description of the IS- 

BST system itself. In Section 3 we describe the design of the cur- 

rent experiment and the tools used during the empirical process. 

Sections 4 and 5 present the results from the experiment and dis- 

cuss their significance, respectively. The threats to the validity of 

the study are discussed in Section 6 , and Section 7 concludes the 

paper. 

2. Context 

This experiment is inspired by results from a study conducted 

with our industrial partner, to investigate the possibility of using 

interactive search-based software testing (ISBST) to improve the 

testing process. Our industrial partner develops embedded soft- 

ware for industrial applications. The ISBST tool was previously de- 

veloped and evaluated in that context, on a small number of com- 

pany engineers. Therefore, this study will evaluate the ISBST tool 

outside of that specific context and with a larger number of par- 

ticipants. 

We define a “domain specialist” as a person that develops and 

tests software for their specific domain as part of their activities, 

but that is not a software engineer. To assist domain specialists, 

tools are specifically designed to use the terminology, symbols, and 

concepts specific to the domain, rather than those specific to soft- 

ware development and testing. Thus, they focus on domain experi- 

ence and expertise rather than knowledge specific to software test- 

ing. 

In previous work [3] we proposed a tool, called the Interactive 

Search-Based Software Testing (ISBST) tool, that would use search- 

based techniques to help in the testing process. It is difficult to 

develop a priori a fitness function that would be useful for a gen- 

eral SUT. As a result, the ISBST tool was designed to use a Dynam- 

ically Adapted Fitness Function (DAFF). In this concept, the fitness 

function is composed of a set of dimensions relevant to system 

quality to assess each candidate solution. By changing the relative 

importance of these attributes, the domain specialist can change 

the fitness function and indirectly guide the search. In our previ- 

ous study, the relevant dimensions were identified and validated 

in collaboration with our industrial partner. 

Further work [9] resulted in a practical implementation of the 

ISBST tool. The tool, and the concept of a Dynamically Adapted Fit- 

ness Function, were validated in a small case study conducted in 

an industrial setting. One of the results of that study was that the 

test cases that were developed by using the ISBST tool were useful 

and unexpected. The domain specialists using the tool stated that 

they would not have considered investigating that type of behavior, 

but that the behavior itself was a good addition to the test suite. 

The results of the exploratory study mentioned above indicated 

that using the ISBST tool would enable domain specialists to guide 

the search towards a more diverse set of behaviors than they could 

develop by using manual techniques. The more diverse set of be- 

haviors would then be assessed by the domain specialists, who 

would refine relevant test cases and add them to the test suites. 

Henceforth, we define the “behavior” as the set of measured 

outputs, or any function of those outputs, corresponding to a given 

set of inputs of the system under test (SUT). Thus, the “observed 

behavior space”, or just “behavior space”, is the total set of possi- 

ble behaviors for a given SUT. Note that the behavior space deals 

only with characteristics of the SUT that are measured or evalu- 

ated, and is not a complete description of the SUT. The behaviors 

that are measured and form the behavior space will be called “be- 

havior attributes”. The ISBST system may try to optimize, i.e. min- 

imize or maximize, the found values for a given behavior attribute 

in a direction. In this case, a “search objective” is defined as the 

combination of behavior attribute and direction. 

Additional behavior attributes may be identified and added, if 

they are considered relevant, and this would result in changes to 

the behavior space of the SUT. This further complicates attempts to 

explore the behavior space. For this paper, we define a “test case”

to consist of a set of inputs and the corresponding SUT behavior. 

The behavior space of a system is, in general, difficult to define 

and difficult to explore purposefully. Varying only certain charac- 

teristics of the behavior is, for most systems, a complex problem. 

The ISBST tool aims to use system behavior to measure the fitness 

of a given test case. By doing so, the ISBST tool can explore the 

behavior space of a system indirectly and develop test cases that 

explore previously unexercised, and unknown, regions of the be- 

havior space. 

2.1. Related work 

Search-based software testing (SBST) is the application of meta- 

heuristic optimization methods to the problem of software test- 

ing. SBST is part of the larger scope of search-based software en- 

gineering, a term coined by Harman and Jones [10] . SBST has been 

successfully applied on a wide range of software testing problems. 

McMinn [1] describes the use of SBST for temporal, structural, and 

functional testing, while Afzal et al. [2] focus their review on the 

use of SBST on non-functional testing. 

Search-based techniques, both in the wider area of software en- 

gineering and, more specifically in the field of testing, rely on hav- 

ing an automated means of assessing the quality, or “fitness” of a 

candidate solution. 

However, the definition and understanding of what fitness is, 

and what candidates are preferable, can change during the search. 



Download English Version:

https://daneshyari.com/en/article/549710

Download Persian Version:

https://daneshyari.com/article/549710

Daneshyari.com

https://daneshyari.com/en/article/549710
https://daneshyari.com/article/549710
https://daneshyari.com

