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a b s t r a c t

This article examines the effects of melting heat transfer and thermal radiation in stagnation point flow
towards a stretching/shrinking surface. Mathematical formulation is made in the presence of mass trans-
fer and second order slip condition. Numerical solutions to the resulting nonlinear problems are obtained
by Runge-Kutta fourth fifth order method. Physical quantities like velocity, temperature, concentration,
skin friction, Nusselt and Sherwood number are analyzed via sundry parameters for stretching/shrinking,
first order slip, second order slip, radiation, melting, Prandtl and Schmidt. A comparative study with the
previously published results in limiting sense is made.
� 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

There is no doubt that stagnation point flows through different
aspects have already been studied extensively. This is because of
importance of such flows in several areas of aerospace technology
and engineering. In fact Hiemenz [1] made pioneering research for
stagnation point flow of viscous fluid. Later the stagnation point
flows are examined by the various authors for viscous and non-
Newtonian fluids. Even many recent attempts have been made
for the analysis of such flows. For instance, Hayat et al. [2] studied
the stagnation point flow of second grade fluid over a stretching
surface with heat and mass transfer. Rosali et al. [3] considered
unsteady mixed convection stagnation point flow by a heated ver-
tical surface embedded in a porous medium. The two-dimensional
stagnation point flow of viscous fluid toward a convectively heated
stretching/shrinking sheet is examined by Bachok et al. [4]. Dinar-
vand et al. [5] developed the similarity solution for the MHD
unsteady stagnation point flow with buoyancy effect. Sharma
et al. [6] numerically discussed the MHD stagnation point flow of
viscous fluid towards a stretching/shrinking permeable plate.
Rashidi and Erfani [7] employed Pade-approximation for MHD Hie-
menz flow in presence of variable wall temperature and porous

medium. Turkyilmazoglu and Pop [8] constructed exact analytical
solutions for stagnation point flow of Jeffrey fluid over a stretching/
shrinking surface. Bhattacharyya [9] analytically discussed the
stagnation point flow past a stretching/shrinking surface with first
order chemical reaction. The unsteady stagnation-point flow
towards a shrinking/stretching sheet with time dependent surface
temperature is analyzed by Bhattacharyya [10] while Makinde,
et al. [11] used Adomian decomposition method for boundary layer
flow with thermal radiation past a moving vertical porous plate.

In all the aforementioned investigations, the no-slip conditions
are employed. However it is noted in a micro electro mechanical
system and some coated surfaces (such as Teflon, resist adhesion)
the no-slip boundary condition is inadequate. Especially partial slip
condition is important in the situation when the fluid is particulate
such as emulsions, suspensions, foams and polymer solutions.
Undoubtedly the materials exhibiting slip are important in techno-
logical applications such as in the polishing of artificial heart valves
and internal cavities. A number of models have been proposed for
describing the slip effect that occurs at solid boundaries. The slip
flow model describes a relation between the tangential component
of the velocity at the surface and the velocity gradient normal to
the surface. Thus a new dimension is added to the above men-
tioned study by considering the effects of partial slip at the stretch-
ing wall. Few researchers have already focused to the flow and heat
transfer analysis at micro-scale with slip effects. Turkyilmazoglu
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[12] found the multiple solutions for the heat and mass transfer
effects in MHD flow of viscoelastic fluid over a stretching wall with
slip boundary condition. Freidoonimehr et al. [13] analyzed the
MHD stagnation point flow towards a porous rotating sheet with
velocity slip condition. Turkyilmazoglu [14] investigated the heat
and mass transfer characteristics in MHD viscous flow over a per-
meable stretched surface with velocity and thermal slip conditions.
Mukhopadhyay [15] performed an analysis to study the slip effects
in MHD boundary layer flow over a porous stretching sheet with
thermal radiation. Malvandi [16] examined the stagnation point
flow of nanofluid over a stretched surface with Navier’s slip condi-
tion. Mabood et al. [17] considered melting heat transfer on MHD
flow of nanofluid with radiation and second order slip. The slip
effect in mixed convective boundary layer flow over a flat surface
is studied by Bhattacharyya et al. [18]. Rashidi et al. [19] studied
the effects of magnetohydrodynamic in flow by a rotating disk
with slip effect. Mukhopadhyay [20] examined the MHD axisym-
metric flow of a viscous fluid by a stretched cylinder with heat
transfer and partial slip effect. Flow of second-grade fluid past a
stretching sheet with partial slip is addressed by Hayat et al. [21].

To the best of our information, the stagnation point flow
towards a surface with simultaneous effects of melting heat trans-
fer and second order slip are not discussed so far. The purpose here
is to fill this gap. Hence both cases of flows induced by stretching
and shrinking surface velocities are discussed. Thermal radiation
and mass transfer characteristics in the flow are present. Numeri-
cal solution to the resulting nonlinear flow problem is computed.
Comparison of presents results with the previous limiting studies
is also made.

Problem development

We consider the effect of melting heat transfer in stagnation
point flow of viscous fluid towards a stretching surface with second
order slip. The stretching and external flow velocities are taken
respectively by uw ¼ cx and ue ¼ ax (where a and c are a positive
constant). It is also assumed that viscous dissipation and heat gen-
eration or absorption effects are absent. Thermal radiation features
are present. The melting surface and the ambient temperatures are
respectively denoted by Tm and T1 where ðT1 > TmÞ. Mass transfer
is also considered and the species concentration is sustained at the
prescribed constant value Cw at the sheet. The governing equations
of mass, linear momentum, energy and concentration are
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with the boundary conditions

y ¼ 0 : u ¼ uw þ uslip; T ¼ Tm;
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y ¼ 1 : u ¼ ue; T ¼ T1; C ¼ C1: ð6Þ

In above expressions u and v are the velocity components along
the x and y-axes respectively. a ¼ k=qcp is the thermal diffusivity, m
is the kinematic viscosity, q is the density of the fluid, T is the tem-
perature, qr is the radiative heat flux, cp is the specific heat at con-
stant pressure and D is the diffusion coefficient. Through Roseland
approximation one can write
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in which r� denotes the Stefan–Boltzmann constant and k� the
absorption coefficient. Expanding T4 about T1 and neglecting
higher order terms one arrives at
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The velocity slip defined in study [2] is
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Nomenclature

a, c constants
f similarity function for velocity
Pr Prandtl number
Sc Schmidt number
e stretching/shrinking parameter
Shx local Sherwood number
u velocity in x direction [ms�1]
v velocity in y direction [ms�1]
x coordinate along the plate [m]
h dimensionless temperature
l dynamic viscosity [kg m�1 s�1]
q fluid density [kg m�3]
cp specific heat [m2 s�2 K�1]
w stream function [m2 s�1]
Tw surface temperature [K]
T1 ambient temperature [K]
C1 concentration far away from sheet

d; c first/second order slip parameters
Cf skin friction coefficient
Rex local Reynolds number
Me melting parameter
Nux local Nusselt number
ue external flow velocity [ms�1]
uw stretching velocity [ms�1]
g similarity independent variable
y coordinate normal to the plate [m]
R radiation parameter
a thermal diffusivity [m2 s�1]
qr radiative heat flux [kg m�2]
k⁄ absorption coefficient
m kinematic viscosity [m2 s�1]
k thermal conductivity [Wm�1 K]
qw heat flux [Wm�2]
Cw wall concentration
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