
Author's Accepted Manuscript

Utilization of GEANT to calculation of production yield for 89Zr by charge particles interaction on ⁸⁹Y. ^{nat}Zr and ^{nat}Sr

Mozhgan Sharifian, Mahdi Sadeghi, Behrouz Alirezapour

PII: S0969-8043(17)30423-2

http://dx.doi.org/10.1016/j.apradiso.2017.06.005 DOI:

Reference: ARI7909

To appear in: *Applied Radiation and Isotopes*

Received date: 22 March 2017 Revised date: 29 May 2017 Accepted date: 7 June 2017

Cite this article as: Mozhgan Sharifian, Mahdi Sadeghi and Behrouz Alirezapour Utilization of GEANT to calculation of production yield for ⁸⁹Zr by charge particles interaction on 89Y, natZr and natSr, Applied Radiation and Isotopes http://dx.doi.org/10.1016/j.apradiso.2017.06.005

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Utilization of GEANT to calculation of production yield for 89Zr by charge

particles interaction on ⁸⁹Y, ^{nat}Zr and ^{nat}Sr

Mozhgan Sharifian^a, Mahdi Sadeghi^{b*}, Behrouz Alirezapour^c

^aDepartment of Physics, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran,

^bMedical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box:

14155-6183, Tehran, Iran

^cRadiation Application Research School, Nuclear Science and Technology Research Institute, P.O.

Box: 14395-836, Tehran, Iran,

*Corresponding author: mahdisadeghi2003@yahoo.com

Abstract

The ⁸⁹Zr, is one of the radionuclide with near-ideal properties for PET due to its suitable half-

life and decay properties. The cross-section of ⁸⁹Zr via ⁸⁹Y(p,n)⁸⁹Zr, ⁸⁹Y(d,2n)⁸⁹Zr,

 nat Sr(α ,xn) 89 Zr and nat Zr(p,pxn) 89 Zr, were calculated by the TALYS-1.8 code to predict the

optimum range of charge particle energy. The Monte Carlo code GEANT4 was used to

simulate the formation of ⁸⁹Zr in the target body. The simulated ⁸⁹Zr yield was in good

agreement with published experimental results in the optimum energy range. According to the

calculations, the ⁸⁹Y(p,n)⁸⁹Zr was superior to the other reactions useful to medical

application.

Keywords: Radionuclide; ⁸⁹Zr; PET; Production yield; Monte Carlo.

1. Introduction

The radionuclide zirconium-89 can be employed in positron emission tomography

(PET) because of its suitable half-life ($T_{1/2} = 78.41$ h), emission of low energy and suitable

1

Download English Version:

https://daneshyari.com/en/article/5497741

Download Persian Version:

https://daneshyari.com/article/5497741

<u>Daneshyari.com</u>