
An empirical research agenda for understanding formal methods
productivity

Ross Jeffery ⇑, Mark Staples, June Andronick, Gerwin Klein, Toby Murray
NICTA, Australia
University of New South Wales, Australia
223 Anzac Parade, Kensington, NSW 2052, Australia

a r t i c l e i n f o

Article history:
Received 23 June 2014
Received in revised form 13 November 2014
Accepted 15 November 2014
Available online 23 December 2014

Keywords:
Empirical software engineering
Productivity
GQM
Formal methods
Formal verification
Proof Engineering

a b s t r a c t

Context: Formal methods, and particularly formal verification, is becoming more feasible to use in the
engineering of large highly dependable software-based systems, but so far has had little rigorous empir-
ical study. Its artefacts and activities are different to those of conventional software engineering, and the
nature and drivers of productivity for formal methods are not yet understood.
Objective: To develop a research agenda for the empirical study of productivity in software projects using
formal methods and in particular formal verification. To this end we aim to identify research questions
about productivity in formal methods, and survey existing literature on these questions to establish face
validity of these questions. And further we aim to identify metrics and data sources relevant to these
questions.
Method: We define a space of GQM goals as an investigative framework, focusing on productivity from
the perspective of managers of projects using formal methods. We then derive questions for these goals
using Easterbrook et al.’s (2008) taxonomy of research questions. To establish face validity, we document
the literature to date that reflects on these questions and then explore possible metrics related to these
questions. Extensive use is made of literature concerning the L4.verified project completed within NICTA,
as it is one of the few projects to achieve code-level formal verification for a large-scale industrially
deployed software system.
Results: We identify more than thirty research questions on the topic in need of investigation. These
questions arise not just out of the new type of project context, but also because of the different artefacts
and activities in formal methods projects. Prior literature supports the need for research on the questions
in our catalogue, but as yet provides little evidence about them. Metrics are identified that would be
needed to investigate the questions. Thus although it is obvious that at the highest level concepts such
as size, effort, rework and so on are common to all software projects, in the case of formal methods, mea-
surement at the micro level for these concepts will exhibit significant differences.
Conclusions: Empirical software engineering for formal methods is a large open research field. For the
empirical software engineering community our paper provides a view into the entities and research
questions in this domain. For the formal methods community we identify some of the benefits that
empirical studies could bring to the effective management of large formal methods projects, and list
some basic metrics and data sources that could support empirical studies. Understanding productivity
is important in its own right for efficient software engineering practice, but can also support future
research on cost-effectiveness of formal methods, and on the emerging field of Proof Engineering.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Formal methods is the mathematical specification, design and
verification of computer systems. It can provide a much higher level
of assurance than traditional code-and-test approaches to software
engineering. Software engineering researchers have aspired to see
the wide-spread use of formal methods since the 1970s, but only

http://dx.doi.org/10.1016/j.infsof.2014.11.005
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: University of New South Wales, Australia. Tel.: +61 2
9376 2000.

E-mail address: ross.jeffery@nicta.com.au (R. Jeffery).

Information and Software Technology 60 (2015) 102–112

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.11.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.11.005
mailto:ross.jeffery@nicta.com.au
http://dx.doi.org/10.1016/j.infsof.2014.11.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


recently have technologies and techniques developed enough for it
to become practical for use in non-trivial systems development pro-
jects. Increasingly, software systems are also safety- or security-
critical and so could benefit from formal methods verification to
provide direct evidence about system dependability. Nonetheless,
to broaden its reach requires that its costs be better understood
and where possible reduced. In particular, as noted by Klein [29],
verification of low level implementations has been considered to
be prohibitively expensive until recently. But this view is changing
with the development of newer tools and methods. Studies such as
those by King et al. [27] show the benefits of formal specification
and verification. In this study they were able to show that for the
SHOLIS system, the use of a Z proof of properties at the require-
ments and design levels was ‘‘substantially more efficient at finding
faults than the most efficient testing phase’’. In addition they con-
cluded that verification of SPARK Ada code was ‘‘more efficient at
error detection than unit testing’’. However studies such as this
are still rare and the insights provided into formal methods produc-
tivity partial and inconsistent. Thus we need a deeper understand-
ing of productivity in this context.

Formal methods involves different kinds of development arte-
facts than traditional software engineering, and can provide quali-
tatively different kinds of assurance. As will be discussed in this
paper, some of the traditional metrics used in empirical software
engineering do not apply in projects using formal methods. New
metrics will be needed. In a previous paper [1], we claimed that
there is not yet a good understanding of what to measure in pro-
jects using formal methods. There is a need for research on metrics,
cost models and estimation methods for such projects. This echoes
much earlier statements [15,48], which indicates the lack of pro-
gress in this field over many years.

In this paper we define a space of research questions about the
productivity of formal methods, and define a collection of metrics
that bear on these research questions. For each question, evidence
provided in the literature pertaining to that question is shown. Our
paper provides a research agenda and a call to researchers in
Empirical Software Engineering to study formal methods projects,
and for researchers and practitioners in formal methods to collab-
orate on the opportunity provided by these empirical studies.

The questions in this paper are relevant whether we want to (a)
reduce the cost of formal methods, (b) have it scale better, or (c)
provide evidence to compare its cost-effectiveness with conven-
tional software engineering. For any of these goals we need to be
able to characterize the cost of formal methods and uncover appro-
priate metrics for this context. We can then use these metrics to
develop an understanding of task size and effort drivers, and the
empirical relationships between these and effort and schedule.

The existing literature is used in three ways in this paper.
Firstly, we motivate the work using published papers showing
the current lack of empirical evidence concerning cost, effort and
quality of formal methods application in industry. Secondly we
use literature to test the face validity of the research questions pro-
posed, and finally we summarize literature that addresses guide-
lines and management issues concerning the application of
formal methods. This finally provides a summary of the state of
practice and a picture of the need for careful empirical research
on the use and characteristics of formal methods in industry.

2. Background

It is significant for this work that formal methods may use dif-
ferent activities to produce different artefacts as part of a different
lifecycle compared with traditional software engineering. An illus-
tration of this is shown in a formal verification process lifecycle
model in Fig. 1. In this model major artefact differences include

the proofs themselves and the set of invariants of the system,
which would not be present in conventional software engineering.
The different activities that create and maintain those artefacts are
also present in the process lifecycle.

Formal methods may target functional correctness, but this is
not the only ‘‘quality’’ of software. Security properties and real-
time performance may also be able to be supported by formal
methods, but qualities such as maintainability or portability do
not have accepted mathematical formalizations.

Many empirical studies of conventional software engineering
have examined the impact of process or technology on defect den-
sity (the number of defects per code size). With conventional soft-
ware engineering, defects may be able to be reduced, but no
guarantees can be provided that all defects have been identified
or eliminated. In contrast, formal methods offers the possibility
to create software with zero defects. (Subject to the soundness of
the logical reasoning used and the empirical validity of the models
of specifications and machines.) This makes it qualitatively differ-
ent to conventional software engineering. Klein [29] notes ‘‘formal
methods held much promise in the 1970s but failed to deliver’’.
However he further states ‘‘this situation has changed drastically’’
illustrating that formal verification of medium-level models of
large systems of the order of 100,000 lines of C code has been dem-
onstrated, and that formal verification of low-level implementa-
tions of systems around 10,000 lines of C code has also been
achieved. The focus of Klein’s paper [29] is on verification of oper-
ating systems, and it discusses in detail the Verisoft project and the
L4.verified/seL4 project among others. What is revealed is that the
methods, tools and skills available now make low-level verification
a practical approach to be combined with testing and inspections
in software development.

In their 2009 paper Woodcock et al. [50] find that ‘‘a weakness
in the current situation is lack of a substantial body of technical
and cost-benefit evidence from application of formal methods
and verification technology’’. In summarizing their survey they
report that 35% of respondents showed improvement in time and
12% a worsening. With regard to cost 37% reported an improve-
ment and 7% a worsening, and with respect to quality, 92%
reported an improvement and 8% reported worse quality. It is clear
from this that a deeper empirical understanding is needed of the
use of formal methods and their impact on cost, quality, and sche-
dule. Woodcock et al. [50] also provide eight case study descrip-
tions of relatively recent industrial projects using formal
methods. These are then used to observe that formal methods have
‘‘not seen widespread adoption. . .except arguably in the develop-
ment of critical systems in certain domains’’.

In this paper we argue that given this, it is now time for the
empirical software engineering community to add to our under-
standing of verification processes, artefacts, and contexts and to
provide the necessary evidence needed to further the industrial
application of formal verification in a cost effective manner. A first
step in this is a deeper understanding of formal methods productiv-
ity. We focus intentionally on the use of formal methods in indus-
trial scale projects as it is in this context that productivity
becomes an issue and is additionally susceptible to empirical study.

The background literature is examined below as it relates to the
research questions identified. A thorough review of the literature
reveals little empirical study of the processes involved in the use
of formal methods and inconsistent and incomplete findings to
date concerning productivity in this domain.

3. Research goals

Our investigation uses the Goal Question Metric (GQM)
approach [2,37]. GQM is a framework for the specification of a

R. Jeffery et al. / Information and Software Technology 60 (2015) 102–112 103



Download English Version:

https://daneshyari.com/en/article/549817

Download Persian Version:

https://daneshyari.com/article/549817

Daneshyari.com

https://daneshyari.com/en/article/549817
https://daneshyari.com/article/549817
https://daneshyari.com

