
Data stream mining for predicting software build outcomes using source
code metrics

Jacqui Finlay, Russel Pears, Andy M. Connor ⇑
Auckland University of Technology, Auckland, New Zealand

a r t i c l e i n f o

Article history:
Received 5 December 2012
Received in revised form 4 September 2013
Accepted 5 September 2013
Available online 14 September 2013

Keywords:
Data stream mining
Concept drift detection
Hoeffding tree
Jazz
Software metrics
Software repositories

a b s t r a c t

Context: Software development projects involve the use of a wide range of tools to produce a software
artifact. Software repositories such as source control systems have become a focus for emergent research
because they are a source of rich information regarding software development projects. The mining of
such repositories is becoming increasingly common with a view to gaining a deeper understanding of
the development process.
Objective: This paper explores the concepts of representing a software development project as a process
that results in the creation of a data stream. It also describes the extraction of metrics from the Jazz repos-
itory and the application of data stream mining techniques to identify useful metrics for predicting build
success or failure.
Method: This research is a systematic study using the Hoeffding Tree classification method used in con-
junction with the Adaptive Sliding Window (ADWIN) method for detecting concept drift by applying the
Massive Online Analysis (MOA) tool.
Results: The results indicate that only a relatively small number of the available measures considered
have any significance for predicting the outcome of a build over time. These significant measures are
identified and the implication of the results discussed, particularly the relative difficulty of being able
to predict failed builds. The Hoeffding Tree approach is shown to produce a more stable and robust model
than traditional data mining approaches.
Conclusion: Overall prediction accuracies of 75% have been achieved through the use of the Hoeffding
Tree classification method. Despite this high overall accuracy, there is greater difficulty in predicting fail-
ure than success. The emergence of a stable classification tree is limited by the lack of data but overall the
approach shows promise in terms of informing software development activities in order to minimize the
chance of failure.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Software development projects involve the use of a wide range
of tools to produce a software artifact, and as a result the history of
any given software development endeavor may be distributed
across a number of such tools. Recent research in this area [1]
has classified the types of artifacts that can be used to reconstruct
the history of a project. These include the source code itself, source
code management systems, issue tracking systems, messages be-
tween developers and users, meta-data about the projects and
usage data. Software repositories such as source code management
systems have become a focus for emergent research as being a po-
tential source of rich information regarding software development
projects. The mining of such repositories is becoming increasingly

common with a view to gaining a deeper understanding of the
development process.

Jazz (http://jazz.net) is a collaborative software engineering
toolset developed by IBM that has been recognized as offering
new opportunities in this area because it integrates the software
archive and bug database into a single repository. This is achieved
by linking bug reports and source code changes with each other
[2]. In addition to the toolset itself, IBM has also released the data
repository associated with the development of Jazz. This provides
access to nearly all of the artifacts that can be used to construct
the history of the project [1] and includes developer communica-
tion as well as source code and bug reports. Such a repository pro-
vides much potential in gaining valuable insights into the
development process yet comes with particular challenges. One
of the main challenges is that the Jazz environment is not designed
to maintain a complete history of build events. The implication of
this challenge is that mining the repository for a given project does
not involve a static base of data which grows over time. Instead,

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.09.001

⇑ Corresponding author. Tel.: +64 99219999.
E-mail address: andrew.connor@aut.ac.nz (A.M. Connor).

Information and Software Technology 56 (2014) 183–198

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.09.001&domain=pdf
http://jazz.net
http://dx.doi.org/10.1016/j.infsof.2013.09.001
mailto:andrew.connor@aut.ac.nz
http://dx.doi.org/10.1016/j.infsof.2013.09.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


the size of the data is essentially fixed but the bounds of the data
change over time meaning that the available data at any instant
is just a snapshot of the total development history.

Traditional data mining methods and software measurement
studies are tailored to static data environments. These methods
are typically not suitable for streaming data which is a feature of
many real-world applications. Software project data is produced
continuously and is accumulated over long periods of time for
large systems. The dynamic nature of software and the resulting
changes in software development strategies over time causes
changes in the patterns that govern software project outcomes.
This phenomenon has been recognized in many other domains
and is referred to as data evolution, dynamic streaming or concept
drifting [3]. However there has been little research to date that
investigates concept drifting in software development data despite
being recognized as an area of interest [4]. Changes in a data
stream can evolve slowly or quickly and the rates of change can
be queried within stream-based tools. This paper describes an ini-
tial attempt to fully extract the richness available in the Jazz data
set by constructing predictive models to classify a given build as
being either successful or not, using software metrics as the predic-
tors for a build outcome. In this context, a build attempt in the Jazz
software is the process of performing software subsystem integra-
tion and the integration of multiple subsystems. Build success is
therefore a successful integration which includes compilation, test-
ing and packaging without producing any errors [5]. Build failure is
therefore the presence of an error that prevents the creation of a
deployable software package.

This research investigates the construction of predictive models
to determine build outcomes in advance of the build attempt. Pre-
vious work [6,7] in this area has shown that there is potential for
such prediction to occur, however the use of traditional data min-
ing approaches results in unstable models with limited applicabil-
ity. This work therefore investigates the application of data stream
mining approaches that are capable of adapting to changes in the
underlying data distribution to determine whether they produce
more stable models. The goals of the research are formally ex-
pressed in Section 4.

The models that are built in this research involve the tracking of
the trajectory of classification accuracy over time. The models are
built incrementally as each new data instance (software build) that
arrives is used to update the existing model. With the Jazz reposi-
tory there exists a certain set of builds having known outcomes
that can be chosen from to train and induce an initial model (in
the form of a Decision Tree) and the rest of the builds can then
be utilized to incrementally update the model. This implies that
there is freedom to choose in which order the instances are sup-
plied and hence this produces an opportunity to track the effects
of instance ordering on classification accuracy of the predictive
model that are constructed and incrementally maintained.

Section 2 provides a brief overview of related work. Section 3
discusses the nature of the Jazz data repository and software met-
rics that were utilized during the mining the repository. Section 4
discusses the approach to mining the software repository in Jazz,
and initial results are presented in Section 5. Finally, in Sections
6 and 7, a discussion of the limitations of the current work and a
plan for addressing these issues in future work are presented.

2. Background and related work

The mining of software repositories involves the extraction of
both basic and value-added information from existing software
repositories [8]. Such repositories are generally mined to extract
facts by different stakeholders for different purposes. Data mining
is becoming more prevalent in software engineering environments

[4,9,10] and the application of mining software repositories in-
clude areas as diverse as the development of fault prediction mod-
els [11], impact analysis [12], effort prediction [13,14], similarity
analysis [15] and the prediction of architectural change [16] to
name but a few. The growth in popularity in mining software
repositories have led some researchers to believe that we are on
the brink of introducing the idea of Software Intelligence (SI) as
the future of mining software engineering data [17]. Hassan and
Xie [17] argue that ‘‘Software Intelligence offers software practitio-
ners (not just developers) up-to-date and pertinent information to
support their daily decision-making processes. SI provides practi-
tioners with access to specialized fact-supported views of their
software system so they can answer critical questions about it.’’

According to Herzig and Zeller [2], Jazz offers not only huge
opportunities for software repository mining but also a number
of challenges. One of the opportunities is the provision of a detailed
dataset in which all software artifacts are linked to each other. To
date, much of the work that utilizes Jazz as a repository has fo-
cused on the convenience provided by linking artifacts such as
bug reports to specification items along with the team communica-
tion history. Researchers have focused on areas such as whether
there is an association between team communication and build
failure [5] or software quality in general [18]. Other work has fo-
cused on whether it is possible to identify relationships among
requirements, people and software defects [19] or has focused
purely on the collaborative nature of software development [20].
To date, most of the work involving the Jazz dataset has focused
on aspects other than analysis of the source code contained in
the repository and as such the full range of the available project
history is not being fully utilised.

Research that focuses on the analysis of metrics derived from
source code analysis to predict software defects has generally
shown that there is no single code or churn metric capable of pre-
dicting failures [21–23]. However, evidence suggests that a combi-
nation of such metrics can be used effectively [24]. To date no such
source code analysis in a data stream context has been conducted
on the Jazz project data and it is the objective of this study to per-
form an in-depth analysis of the repository to gain insight into the
usefulness of software metrics in predicting software build failure.
In particular the focus is on using data stream mining techniques
to enable software development teams to collect and mine SE data
on the fly to provide rapid just-in-time information to guide soft-
ware decisions as has been suggested in the literature [4]. How-
ever, this is just one element of a larger research agenda that
looks to fully integrate the available project history into a usable
decision support environment that supports the software develop-
ment team. It is likely that such an approach will use not only soft-
ware metrics, but also developer communication metrics [5] as
well as repository level change measures. Such measures have
been noted as being good indicators of failure in the literature [25].

Despite the claims that change measures are good indicators of
failure, there is also evidence that fine grained source code change
metrics are also good indicators of failure when compared to code
churn metrics [26]. The conflicting evidence of what is likely to be
a good indicator of failure implies that there is a need for a decision
support dashboard that is based on multiple measures. The need
for decision support in software engineering has been identified
in the literature [27] and is clearly concordant with the concepts
of Software Analytics [28] and Software Intelligence. The emer-
gence of decision support models based around the use of software
metrics is likely to see different aspects of software engineering re-
search merge and overlap. This is already apparent with recent re-
search that looks at using Search Based Software Engineering
techniques as a feature selection technique applied to choosing
software metrics for defect prediction [29]. Other approaches
investigate the use of information density as a means of selecting

184 J. Finlay et al. / Information and Software Technology 56 (2014) 183–198



Download English Version:

https://daneshyari.com/en/article/549823

Download Persian Version:

https://daneshyari.com/article/549823

Daneshyari.com

https://daneshyari.com/en/article/549823
https://daneshyari.com/article/549823
https://daneshyari.com

