
A hybrid class- and prototype-based object model to support
language-neutral structural intercession

Francisco Ortin a,⇑, Miguel A. Labrador b, Jose M. Redondo a

a University of Oviedo, Computer Science Department, Calvo Sotelo s/n, 33007 Oviedo, Spain
b University of South Florida, Department of Computer Science and Engineering, 4202 East Fowler Avenue, ENB118 Tampa, FL, USA

a r t i c l e i n f o

Article history:
Received 25 July 2012
Received in revised form 4 September 2013
Accepted 6 September 2013
Available online 17 September 2013

Keywords:
Structural intercession
Duck typing
Prototype-based object model
Reflection
Virtual machine
Dynamic languages

a b s t r a c t

Context: Dynamic languages have turned out to be suitable for developing specific applications where
runtime adaptability is an important issue. Although .NET and Java platforms have gradually incorporated
features to improve their support of dynamic languages, they do not provide intercession for every object
or class. This limitation is mainly caused by the rigid class-based object model these platforms imple-
ment, in contrast to the flexible prototype-based model used by most dynamic languages.
Objective: Our approach is to provide intercession for any object or class by defining a hybrid class- and
prototype-based object model that efficiently incorporates structural intercession into the object model
implemented by the widespread .NET and Java platforms.
Method: In a previous work, we developed and evaluated an extension of a shared-source implementa-
tion of the .NET platform. In this work, we define the formal semantics of the proposed reflective model,
and modify the existing implementation to include the hybrid model. Finally, we assess its runtime per-
formance and memory consumption, comparing it to existing approaches.
Results: Our platform shows a competitive runtime performance compared to 9 widespread systems. On
average, it performs 73% and 61% better than the second fastest system for short- and long-running appli-
cations, respectively. Besides, it is the JIT-compiler approach that consumes less average memory. The
proposed approach of including a hybrid object-model into the virtual machine involves a 444% perfor-
mance improvement (and 65% less memory consumption) compared to the existing alternative of creat-
ing an extra software layer (the DLR). When none of the new features are used, our platform requires 12%
more execution time and 13% more memory than the original .NET implementation.
Conclusion: Our proposed hybrid class- and prototype-based object model supports structural
intercession for any object or class. It can be included in existing JIT-compiler class-based platforms to
support common dynamic languages, providing competitive runtime performance and low memory
consumption.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic languages have recently turned out to be suitable for
specific scenarios such as Web development, rapid prototyping,
developing systems that interact with data that change unpredict-
ably, dynamic aspect-oriented programming, and any kind of run-
time adaptable or adaptive software. The main benefit of these
languages is the simplicity they offer to model the dynamicity that
is sometimes required to build high context-dependent software.
Common features of dynamic languages are meta-programming,
reflection, mobility, and dynamic reconfiguration and distribution.

Taking Web engineering as an example, Ruby [1] has been suc-
cessfully used together with the Ruby on Rails framework to create
database-backed Web applications [2]. This framework has con-
firmed the simplicity of implementing the DRY (Do not Repeat
Yourself) [3] and the Convention over Configuration [2] principles
with this kind of languages. Nowadays, JavaScript [4] is being
widely employed to create interactive Web applications with AJAX
(Asynchronous JavaScript And XML) [5], while PHP (PHP Hypertext
Preprocessor) is one of the most popular languages for developing
Web-based views. Python [6] is used for many different purposes;
two well-known examples are the Zope application server [7]
(a framework for building content management systems, intranets
and custom applications) and the Django Web application
framework.

Due to the recent success of dynamic languages, statically typed
languages – such as Java and .NET – are gradually incorporating
more dynamic features into their platforms. Taking Java as an

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.09.002

⇑ Corresponding author. Tel.: +34 985 10 3172.
E-mail addresses: ortin@lsi.uniovi.es (F. Ortin), labrador@cse.usf.edu

(M.A. Labrador), redondojose@uniovi.es (J.M. Redondo).
URLs: http://www.di.uniovi.es/~ortin (F. Ortin), http://www.csee.usf.edu/~

labrador/ (M.A. Labrador).

Information and Software Technology 56 (2014) 199–219

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.09.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.09.002
mailto:ortin@lsi.uniovi.es
mailto:labrador@cse.usf.edu
mailto:redondojose@uniovi.es
http://www.di.uniovi.es/~ortin
http://www.csee.usf.edu/~ labrador/
http://www.csee.usf.edu/~ labrador/
http://dx.doi.org/10.1016/j.infsof.2013.09.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

example, the reflection API became part of the Java platform with
its release 1.1. This API offers introspection services to examine
the structures of object and classes at runtime, plus object creation
and method invocation – involving a substantial performance
overhead. The dynamic proxy class API was added to Java 1.3. It al-
lows defining a class at runtime that implements any interface,
funneling all its method calls to an InvocationHandler. The Java
instrument package (included in Java SE 1.5) provides services
that allow Java agents to instrument programs running on the
JVM. This package has been used to implement JAsCo, a fast dy-
namic AOP platform [8]. Together with other tools such as BCEL
[9] and Javassist [10], these agents have also been successfully
used in the implementation of application servers such as Spring
Java and JBoss, obtaining good runtime performance. The Java
Scripting API added to Java 1.6 permits dynamic scripting pro-
grams to be executed from, and have access to, the Java platform
[11]. Finally, the Java Specification Request 292 [12] has been
incorporated to the Java 1.7 Standard Edition. It adds the new
invokedynamic opcode to the Java Virtual Machine (JVM) and
the java.lang.invoke package to the platform [12], making it
easier to implement dynamically typed languages in the Java vir-
tual machine. Its main advantage is a user-defined linkage mecha-
nism to postpone method call-sites resolution until runtime.

This trend has also been observed in the .NET platform. The Dy-
namic Language Runtime (DLR) has been included as part of the
.NET framework 4.0 [13]. The DLR adds to the .NET platform a new
layer that provides services to facilitate the implementation of dy-
namic languages over the platform [14]. Moreover, Microsoft has
included the new dynamic type to C# 4.0, allowing the program-
mer to write dynamically typed code in a statically typed program-
ming language. With this new characteristic, C# 4.0 offers direct
access to code in IronPython, IronRuby and the JavaScript code in
Silverlight, making use of the DLR services.

The DLR is built over the .NET virtual machine (the CLR, Common
Language Runtime) to provide dynamic typing features over a
statically-typed and class-based platform. It offers the common
primitives provided by dynamic languages, such as structural
intercession and duck typing, that the CLR does not support; it also
simulates the prototype-based object model implemented by
many reflective dynamic languages [15]. This extra layer over the
virtual machine involves some drawbacks. The first one is that
the specific features of dynamic languages are not provided for
every object or class in the system. A C# programmer can only
change the structure ofExpandoObject instances (see Section 2.3).
Another limitation is that the introspective services of the platform
do not take effect with ExpandoObjects. An additional major dis-
advantage is that this new software layer commonly involves a
runtime performance penalty (see Section 4).

In order to overcome these limitations, we propose the addition
of the specific features provided by most dynamic languages (such
runtime structural intercession and duck typing) at the virtual ma-
chine level, supplying these services for any object or class. There-
fore, the benefits of widely-used statically-typed platforms such as
Java and .NET will be complemented with the runtime adaptiveness
of dynamic languages. The use of the very same virtual machine for
both types of languages will also facilitate the future interopera-
tion between them.

The main contribution of this paper is the definition of a hybrid
class- and prototype-based model valid to support structural inter-
cession and duck typing at the virtual machine level of class-based
platforms such as Java and .NET, offering these new features for any
object or class. In a previous work, we extended a shared source
implementation of .NET (the SSCLI, also known as Rotor) to provide
some of the introspection services provided by most existing reflec-
tive languages [16]. In this work, we have extended that implemen-
tation to include the proposed hybrid class- and prototype-based

model, validated with a lightweight formalization tool. Runtime
performance and memory consumption of that implementation
has been evaluated and compared with other existing approaches.
We refer to our platform as Reflective Rotor or zRotor.

The rest of the paper is structured as follows. Section 2 presents
the existing approaches to provide structural intercession, and our
proposed model is formalized in Section 3. Section 4 presents an
evaluation of runtime performance and memory consumption.
Section 5 discusses the related work, and Section 6 concludes
and presents future work.

2. Existing approaches to provide structural intercession

There are two main approaches to provide structural interces-
sion: the class-based and the prototype-based object models. The
.NET platform implements a hybrid approach, but its reflective ser-
vices are not offered for every object or class (Section 2.3). As we
will see, this limitation is mainly caused by the rigid class-based
object model this platform actually implements in contrast to
the flexible prototype-based model used by most dynamic lan-
guages. This section first defines the basis of reflection; afterwards,
the existing approaches to provide structural intercession are
analyzed.

Reflection is the capability of a computational system to reason
about and act upon itself, adjusting itself to changing conditions
[17]. In a reflective language, the computational domain is en-
hanced with its self-representation, offering its structure and
semantics as computable data at runtime. Reflection has been rec-
ognized as a suitable tool to aid the dynamic evolution of running
applications, being the primary technique to obtain meta-pro-
gramming, adaptiveness, and dynamic reconfiguration features of
dynamic languages [18]. Computational reflection is the activity
performed by a computational system when doing computation
about (and by possibly affecting) its own computation [17].

Introspection is the reflection level that allows the inspection,
but not the modification, of the program self-representation. Both
Java and .NET platforms offer introspection by means of the java.-
lang.reflect package and the System.Reflection namespace,
respectively. With these services, the programmer can obtain
information about classes, objects, methods and fields at runtime.
On the other hand, intercession is the ability of a program to modify
its own execution state, including the customization of its own
interpretation or meaning. Adding or removing object fields at run-
time is a typical example of intercession.

Both introspection and intercession are classified as structural
reflection when the system structure is the information reflected
(offered to the programmer as data). In case the program structure
is modified (i.e., structural intercession), changes will be reflected
at runtime. An example of this kind of reflection is inspecting (or
modifying) the structure of a class by the program itself. Behavioral
reflection is concerned with the ability to access to the system
semantics. For instance, MetaXa (formerly called MetaJava [19])
is a Java extension that offers the programmer the dynamic modi-
fication of the method dispatching mechanism.

2.1. Structural intercession in class-based languages

SmallTalk and CLOS are two examples of class-based languages
that provide structural intercession. Their class-based model does
not provide a consistent support for every structural intercession
primitive. This fact was first noticed and partially solved in the
field of object-oriented database management systems [20]. In this
area, objects are stored but their structure, and even their types
(classes), can be altered afterwards as a result of software
evolution.

200 F. Ortin et al. / Information and Software Technology 56 (2014) 199–219

Download	English	Version:

https://daneshyari.com/en/article/549824

Download	Persian	Version:

https://daneshyari.com/article/549824

Daneshyari.com

https://daneshyari.com/en/article/549824
https://daneshyari.com/article/549824
https://daneshyari.com/

