
A controlled experiment in assessing and estimating software maintenance tasks

Vu Nguyen a,⇑, Barry Boehm a, Phongphan Danphitsanuphan b

a Computer Science Department, University of Southern California, Los Angeles, USA
b Computer Science Department, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

a r t i c l e i n f o

Article history:
Available online 20 November 2010

Keywords:
Software maintenance
Software estimation
Maintenance experiment
COCOMO
Maintenance size

a b s t r a c t

Context: Software maintenance is an important software engineering activity that has been reported to
account for the majority of the software total cost. Thus, understanding the factors that influence the cost
of software maintenance tasks helps maintainers to make informed decisions about their work.
Objective: This paper describes a controlled experiment of student programmers performing mainte-
nance tasks on a C++ program. The objective of the study is to assess the maintenance size, effort, and
effort distributions of three different maintenance types and to describe estimation models to predict
the programmer’s effort spent on maintenance tasks.
Method: Twenty-three graduate students and a senior majoring in computer science participated in the
experiment. Each student was asked to perform maintenance tasks required for one of the three task
groups. The impact of different LOC metrics on maintenance effort was also evaluated by fitting the data
collected into four estimation models.
Results: The results indicate that corrective maintenance is much less productive than enhancive and
reductive maintenance and program comprehension activities require as much as 50% of the total effort
in corrective maintenance. Moreover, the best software effort model can estimate the time of 79% of the
programmers with the error of or less than 30%.
Conclusion: Our study suggests that the LOC added, modified, and deleted metrics are good predictors for
estimating the cost of software maintenance. Effort estimation models for maintenance work may use the
LOC added, modified, deleted metrics as the independent parameters instead of the simple sum of the
three. Another implication is that reducing business rules of the software requires a sizable proportion
of the software maintenance effort. Finally, the differences in effort distribution among the maintenance
types suggest that assigning maintenance tasks properly is important to effectively and efficiently utilize
human resources.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Software maintenance is crucial to ensuring useful lifetime of
software systems. According to previous studies [1,4,29], the
majority of software related work in organizations is devoted to
maintaining the existing software systems rather than building
new ones. Despite advances in programming languages and soft-
ware tools that have changed the nature of software maintenance,
programmers still spend a significant amount of effort to work with
source code directly and manually. Thus, it is still an important
challenge in software engineering community to assess mainte-
nance cost factors and develop techniques that allow programmers
to accurately estimate their maintenance work.

A typical approach to building estimation models is to deter-
mine what factors and how much they affect the effort at different

levels and then use these factors as the input parameters in the
models. For software maintenance, the modeling process is even
more challenging. The maintenance effort is affected by a large
number of factors such as size and types of maintenance work, per-
sonnel capabilities, the level of programmer’s familiarity with the
system being maintained, processes and standards in use, com-
plexity, technologies, the quality of existing source code and its
supporting documentation [5,18].

There has been tremendous effort in software engineering
community to study cost-driven factors and the amount of impact
they have on maintenance effort [6,20]. A number of models have
been proposed and applied in practice such as [2,5,12]. Although
maintenance size measured in source lines of code (LOC) is the
most widely used factor in these models, there is a lack of agree-
ment on what to include in the LOC metric. While some models
determine the metric by summing the number of LOC added, mod-
ified, and deleted [2,21], others such as [5] use only LOC that is
added and modified. Obviously, the latter assumes that the deleted
LOC is not significantly correlated with maintenance effort. This

0950-5849/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2010.11.003

⇑ Corresponding author. Tel.: +1 323 481 1585; fax: +1 213 740 4927.
E-mail addresses: nguyenvu@usc.edu (V. Nguyen), boehm@usc.edu (B. Boehm),

phongphand@kmutnb.ac.th (P. Danphitsanuphan).

Information and Software Technology 53 (2011) 682–691

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2010.11.003
mailto:nguyenvu@usc.edu
mailto:boehm@usc.edu
mailto:phongphand@kmutnb.ac.th
http://dx.doi.org/10.1016/j.infsof.2010.11.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


inconsistency in using the size measure results in discrepancies in
strategies proposed to improve software productivity and prob-
lems in comparing and converting estimates among estimation
models.

In this paper, we describe a controlled experiment of student
programmers performing maintenance tasks on a small C++ pro-
gram. The purpose of the study was to assess the size and effort
implications and labor distribution of three different maintenance
types and to describe estimation models to predict the program-
mer’s effort on maintenance tasks. We focus the study on enhan-
cive, corrective, and reductive maintenance types according to a
maintenance topology proposed by Chapin et al. [9]. We chose to
study these maintenance types because they are the ones that
change the business rules of the system by adding, modifying,
and deleting the source code. They are typically the most common
activities of software maintenance. The results of our study suggest
that the corrective maintenance is less productive than enhancive
and reductive maintenance. These results are largely consistent
with the conclusion from previous studies [2,17]. The results fur-
ther provide evidence about the effort distribution of maintenance
tasks in which program comprehension requires as much as 50% of
maintainer’s total effort. In addition, our results on effort estima-
tion models show that using three separate LOC added, modified,
and deleted metrics as independent variables in the model will
likely result in higher estimation accuracies.

The rest of the paper is organized as follows. Section 2 gives a
discussion on the related work. Section 3 provides a method for
calculating the equivalent LOC in maintenance programs. The
experiment design and results are discussed in Sections 4 and 5.
Section 6 describes models to estimate programmers’ effort on
maintenance tasks. Section 7 gives some discussions on the results.
Section 8 discusses various threats to the validity of the research
results, and the conclusions are given in Section 8.

2. Related work

Many studies have been published to address different size and
effort related issues of software maintenance and propose ap-
proaches to estimating the cost of software maintenance work.
To help better understand and access software maintenance work,
Swanson [31] proposes a topology that classifies software mainte-
nance into adaptive, corrective, and perfective maintenance types.
This topology has become popular among researchers, and the IEEE
has adapted these types in its Standard for Software Maintenance
[19] along with an additional preventive maintenance type. In their
proposed ontology of software maintenance, Kitchenham et al. [22]
define two maintenance activity types, corrections and enhance-
ments. The former type is equivalent to adaptive maintenance type
while the latter can be generally equated to adaptive, perfective,
and preventive maintenance types that are defined in Swanson’s
and IEEE’s definitions. Chapin et al. [9] proposed a fine-grained
twelve types of software maintenance and evolution. These types
are classified into four clusters support interface, documentation,
software properties, and business rules, respectively listed in the or-
der of their impact on the software. The last cluster, which consists
of reductive, corrective, and enhancive types, includes all activities
that alter the business rules of the software. Chapin et al.’s classi-
fication does not have a clear analogy with the types defined by
Swanson. As an exhaustive topology, however, it includes not only
Swanson’s and IEEE’s maintenance types but also other mainte-
nance-related activities such as training and consulting.

Empirical evidence on the distribution of effort among mainte-
nance activities helps estimate maintenance effort more accurately
through the use of appropriate parameters for each type of main-
tenance activity and helps better allocate maintenance resources.

It is also useful to determine effort estimates for maintenance
activities that are performed by different maintenance providers.
Basili et al. [2] report an empirical study to characterize the effort
distribution among maintenance activities and provide a model to
estimate the effort of software releases. Among the findings, isola-
tion activities were found to consume a higher proportion of effort
in error correction than in enhancement changes, but a much smal-
ler proportion of effort was spent on inspection, certification, and
consulting in error correction. The other activities, which include
analysis, design, and code/unit test, were found to take virtually
the same proportions of effort in comparison between these two
types of maintenance. Mattsson [25] describes a study on the data
collected from four consecutive versions of a 6-year object-ori-
ented application framework project. The study provides evolu-
tional trends on the relative effort distribution of four technical
phases (analysis, design, implementation, and test) across four ver-
sions of the project, showing that the proportion of implementa-
tion effort tends to decrease from the first version to the forth,
while the proportion of analysis effort follows a reversed trend.
Similarly, Yang et al. [32] present results from an empirical study
on the effort distribution of a series of nine projects delivering
respective nine versions a software product. All projects are main-
tenance type except the first project which delivers the first ver-
sion of the series. The coding activity was found to account for
the largest proportion of effort (42.8%) while the requirements
and design activities consume only 10.2% and 14.5%, respectively.
In addition to analyzing the correlation between maintenance size
and productivity metrics and deriving effort estimation models for
maintenance projects, De Lucia et al. [13] describe an empirical
study on the effort distribution among five phases, namely inven-
tory, analysis, design, implementation, and testing. The analyses
were based on data obtained from a large Y2K project following
the maintenance processes at a software organization. Their results
show that the design phase is the most expensive, consuming
about 38% of total effort, while the analysis and implementation
phases account for small proportions, about 11% each. These re-
sults are somewhat contrary the results reported in Yang et al.’s
[32]. A more recent study reported by the same authors (De Lucia
et al.) presents estimation models and the distribution of effort
from a different project in the same organization [14].

A number of studies have been reported to address the issues
related to characterizing size metrics and building cost estimation
models for software maintenance. In his COCOMO model for soft-
ware cost estimation, Boehm presents an approach to estimating
the annual effort required to maintain a software product. The ap-
proach uses a factor named Annual Change Traffic (ACT) to adjust
the maintenance effort based on the effort estimated or actually
spent for developing the software [7]. ACT specifies the estimated
fraction of LOC which undergo change during a typical year. It in-
cludes source code addition and modification, but excludes dele-
tion. If information is sufficient, the annual maintenance effort
can be further adjusted by a maintenance effort adjustment factor
computed as the product of predetermined effort multipliers. In a
major extension, COCOMO II, the model introduces new formulas
and additional parameters to compute the size of maintenance
work and the size of reused and adapted modules [5]. The addi-
tional parameters take into account the effects such as the com-
plexity of the legacy code and the familiarity of programmers
with the system. In a more recent model extension to estimating
maintenance cost, Nguyen proposes a set of formulas that unifies
two COCOMO II’s reuse and maintenance sizing methods [28].
The extension also takes into account the size of source code
deletions and calibrates new rating scales of the cost drivers
specific to software maintenance.

Basili et al. [2], together with characterizing the effort distribu-
tion of maintenance releases, describe a simple regression model

V. Nguyen et al. / Information and Software Technology 53 (2011) 682–691 683



Download English Version:

https://daneshyari.com/en/article/549863

Download Persian Version:

https://daneshyari.com/article/549863

Daneshyari.com

https://daneshyari.com/en/article/549863
https://daneshyari.com/article/549863
https://daneshyari.com

