
FSM-based conformance testing methods: A survey annotated
with experimental evaluation

Rita Dorofeeva a, Khaled El-Fakih b,*, Stephane Maag c, Ana R. Cavalli c, Nina Yevtushenko a

a Tomsk State University, 36 Lenin Str., 634050, Tomsk, Russia
b American University of Sharjah, College of Engineering, P.O. BOX 2666, Sharjah, United Arab Emirates
c TELECOM SudParis, CNRS UMR 5157, 9, rue Charles Fourier, 91011, Evry Cedex, France

a r t i c l e i n f o

Article history:
Received 8 December 2009
Received in revised form 12 April 2010
Accepted 9 July 2010
Available online 30 July 2010

Keywords:
Conformance testing
Protocol testing
Model based testing
Finite state machines

a b s t r a c t

The development of test cases is an important issue for testing software, communication protocols and
other reactive systems. A number of methods are known for the development of a test suite based on
a formal specification given in the form of a finite state machine. In this paper, we overview and exper-
iment with these methods to assess their complexity, applicability, completeness, fault detection capabil-
ity, length and derivation time of their test suites. The experiments are conducted on randomly generated
specifications and on two realistic protocols called the Simple Connection Protocol and the ITU-T V.76
Recommendation.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The development of test cases based on a formal model is an
important issue for software testing including conformance testing
of communication protocols and other reactive systems. The
purpose of these tests is to determine whether a protocol imple-
mentation conforms to (i.e. is correct with respect to) its specifica-
tion. Usually a conforming implementation is required to have the
same input/output behavior as defined by the specification. In var-
ious application domains, such as telecommunication systems,
communication protocols and other reactive systems, the specifi-
cation can be represented in the form of a finite state machine
(FSM). In particular, FSMs are the underlying models for formal
description techniques, such as SDL and UML State Diagrams. A
number of methods are known for the development of a test suite
based on a specification given in the form of a finite state machine
(FSM). Well-known methods are called the W [1,2], Wp [3], UIO
[4], UIOv [5], DS [6], HSI [7–9] and the H [10,11] test derivation
methods. For related surveys and tools the reader may refer to
[12–17]. Moreover, in the last years an increasing research has
been developed on the application of these methods to object ori-
ented software [18].

In FSM-based testing, one usually assumes that not only the
specification, but also an implementation can be modeled as an

FSM. In order to check if a given implementation under test
(IUT), assumed to be a black-box, conforms to its specification,
input/outputs pairs of test sequences (test cases) are derived from
the given specification. The inputs of these tests are then applied
to an implementation and outputs generated (observed) by the
implementation are compared with expected outputs. If the out-
puts do not match, then the implementation has a fault. A test suite
is called complete if it detects every faulty implementation w.r.t.
the considered fault model. All of the above methods, except of
the UIO method, each provides the following complete fault cover-
age guarantee: if the specification can be modeled by a reduced
deterministic FSM with n states and if an implementation can be
modeled by a complete deterministic FSM with at most m states,
then a test suite can be derived by the method (for this given m)
such that the implementation passes this test suite if and only if
it conforms to the specification (i.e., the implementation and the
specification have the same input/output behaviors). Guessing
the bound of m is an intuitive process based on the knowledge of
a specification and the class of implementations that have to be
tested for conformance and their interior structure [12].
Usually, it is assumed that m equals or is greater than n [2,3,5,8,
9,12,15].

All of the above methods assume that a reset function (written
as ‘r’) is available that allows the reliable reset of an implementa-
tion under test. This implies that the test suite can be composed of
individual test cases, each starting with the reset operation. We
note that there is another group of methods [6,19–21] that do
not use this assumption. These methods usually yield much longer
test suites and are not considered in the paper.

0950-5849/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2010.07.001

* Corresponding author. Tel.: +971 515 6 5152492; fax: +971 971 6 515 2979.
E-mail addresses: drf@kitidis.tsu.ru (R. Dorofeeva), kelfakih@aus.edu (K. El-

Fakih), Stephane.Maag@it-sudparis.eu (S. Maag), Ana.Cavalli@it-sudparis.eu (A.R.
Cavalli), ninayevtushenko@yahoo.com (N. Yevtushenko).

Information and Software Technology 52 (2010) 1286–1297

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2010.07.001
mailto:drf@kitidis.tsu.ru
mailto:kelfakih@aus.edu
mailto:Stephane.Maag@it-sudparis.eu
mailto:Ana.Cavalli@it-sudparis.eu
mailto:ninayevtushenko@yahoo.com
http://dx.doi.org/10.1016/j.infsof.2010.07.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


All the above methods use certain state distinguishing input se-
quences (called state identifiers) for test derivation, and thus, can be
only applied when all states of the specification FSM are pair-wise
distinguishable (i.e. the specification is reduced). Moreover, the
length of a derived test suite essentially depends how state identi-
fiers are selected. The DS method uses a distinguishing sequence of
the specification FSM and can be thought of as a particular case of
the W method. However, the DS method is not always applicable
even for complete reduced specifications [22]. The Wp method is
an improvement of the W method and the UIOv method can be
thought of as a particular case of the Wp. The UIO method employs
part of the UIOv method. However, UIO test suites are not always
complete [5]. We also note that the W method (and correspond-
ingly, Wp- and UIOv-methods) is not always applicable for partial
reduced specifications [9,16]. The reason is not each even reduced
partial FSM has a W set that distinguishes any pair of states of the
specification. The HSI method, another improvement of W method,
can be applied for each reduced deterministic specification FSM.
The H method is an improvement of the HSI method and unlike
all other methods, in the H method, for every state of the specifica-
tion FSM, appropriate state identifiers are derived on-the-fly based
on already derived part of a test suite in order to shorten the length
of the resulting test suite. Similar to HSI method, H method is al-
ways applicable for any reduced specification.

During the past years a lot of research work has been done on
developing complete FSM-based testing methods [1,3,5,8,9,15],
studying the fault coverage of test suites [23,24], developing test-
ing computer-aided tools [13,25], and using the FSM-based meth-
ods in the development of test cases from specifications modeled
using other formalisms as extended FSMs (EFSMs) and labelled
transition systems LTSs (related survey in [12]). Moreover, these
methods have been used in order to derive tests for realistic proto-
cols. For example, Refs. [26] and [15] include a comparison of the
application of the UIO, DS and W methods to a subset of the NBS
Class 4 transport (TP4) [27]. The application of the Wp method
for a control subset of the XTP protocol is presented in [28] and
the application of the HSI method [7,9,29] to the OSI session proto-
col has been presented in [25]. The application of the UIO method
[30] to the ISDN protocol LAPD was conducted at AT&T and re-
ported in [31]. These applications and others [26] have demon-
strated that formal methods for conformance test generation are
quite effective for rather complex communication protocols.

The ongoing research work on the development of complete
testing methods focuses on two issues, minimizing the length of
derived test sequences and enhancing the applicability of the test-
ing methods. For example, it is known that the Wp method gener-
ates shorter tests than its ancestor the W method as demonstrated
in [3]. Also, it is known that the UIO and UIOv methods are more
applicable than the DS method but there exist complete reduced
specifications where the UIO method cannot be applied and thus,
UIO method is less applicable than the W, Wp, HSI, and H methods.
The W and Wp methods are not always applicable for partial re-
duced specifications while the H and HSI methods are applicable
to any complete or partial reduced specification [9,16]. Moreover,
given a reduced FSM M with n states and k input symbols, the
worst-case length of a test suite generated using all the above W,
Wp, HSI, and H methods (except DS and UIO methods) is of order
O(km�n+1n3), where m is the upper bound on the number of states
of an implementation of M [2].

In [15], Sidhu and Leung offered a proper comparison of the W,
DS, and UIO methods. However, to the best of our knowledge, there
is no paper that includes a comprehensive (experimental) evalua-
tion of all FSM-based methods using the same set of specification
FSMs. To this end, in this paper, we first present a detailed over-
view of all above methods including recent methods such as the
HSI [7–9] and the H [10,11] methods. We describe test derivation

using simple formulae and we add corresponding application
examples. Second, we implement and experiment, using randomly
generated specifications, with the above methods in order to:

a. Determine average length and execution time of test suites
for the cases when an implementation has equal or larger
number of states than the specification, i.e., when m = n
and m > n.

b. Study the effects of increasing the number of states and
transitions on the length of obtained test suites.

c. Determine how often the UIO and DS methods are not
applicable.

d. Determine how often the UIO method (when applicable)
generates incomplete test suites and the fault detection
capability of the UIO-based test suites.

e. Compare length of obtained test suites with the estimated
theoretic worst-case upper-bound length.

Moreover, we apply the above test derivation methods to two
realistic protocols, namely the simple connection protocol (SCP)
and the V76 protocol [32], and compare the length of test suites
derived using randomly generated specifications and specifications
of the realistic protocols. A summary of obtained results can be
found in Section 6.

We note that a preliminary version of this work appeared in
[33]. In this paper we extend that work in many ways. For exam-
ple, in this paper, we include more experiments and more thor-
ough analysis, for example, we add experiments for the case
when an implementation has more states than the specification
(i.e. when m > n). In addition, we model and include experiments
with the V.76 protocol [32] and we provide a detailed description
and application example of the recently developed H method
[10,11].

This paper is organized as follows. Section 2 defines notations
for describing finite state machines and Section 3 includes an over-
view of the W, Wp, HSI, H, UIOv, UIO, and DS test derivation meth-
ods. Sections 4 and 5 include the experimental results and Section
6 concludes the paper.

2. Finite state machines

This section contains the definition of basic concepts that are
used in the rest of the paper for demonstrating the test derivation
methods.

2.1. Definition

A deterministic finite state machine (FSM) is an initialized com-
plete deterministic Mealy machine that can be formally defined as
a 6-tuple M = (S,X,Y,dM,kM,s1) [22], where S is a finite set of states, s1

is the initial state, X is a finite set of input symbols, Y is a finite set of
output symbols, dM is the next state (or transition) function: dM:
S � X ? S, kM is the output function: kM:S � X ? Y. In usual way,
functions dM and kM are extended to input sequences.

2.2. Definition

A FSM A is called connected if for each state s 2 S there exists an
input sequence as that takes FSM A from the initial state to state s.
The sequence as is called a transfer sequence for the state s.

2.3. Definition

The concatenation of two sets V1 and V2 of input sequences is de-
fined as V1�V2 = {v1�v2 | v1 2 V1, v2 2 V2}, where v1�v2 denotes the

R. Dorofeeva et al. / Information and Software Technology 52 (2010) 1286–1297 1287



Download	English	Version:

https://daneshyari.com/en/article/549867

Download	Persian	Version:

https://daneshyari.com/article/549867

Daneshyari.com

https://daneshyari.com/en/article/549867
https://daneshyari.com/article/549867
https://daneshyari.com/

