
Quantification of interacting runtime qualities in software architectures:
Insights from transaction processing in client–server architectures

Anakreon Mentis, Panagiotis Katsaros ⇑, Lefteris Angelis, George Kakarontzas
Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

a r t i c l e i n f o

Article history:
Received 22 January 2009
Received in revised form 27 July 2010
Accepted 27 July 2010
Available online 1 August 2010

Keywords:
Software architecture validation
Software quality
Design tradeoffs
Transaction processing
Simulation

a b s t r a c t

Context: Architecture is fundamental for fulfilling requirements related to the non-functional behavior of
a software system such as the quality requirement that response time does not degrade to a point where
it is noticeable. Approaches like the Architecture Tradeoff Analysis Method (ATAM) combine qualitative
analysis heuristics (e.g. scenarios) for one or more quality metrics with quantitative analyses. A quanti-
tative analysis evaluates a single metric such as response time. However, since quality metrics interact
with each other, a change in the architecture can affect unpredictably multiple quality metrics.
Objective: This paper introduces a quantitative method that determines the impact of a design change on
multiple metrics, thus reducing the risks in architecture design. As a proof of concept, the method is
applied on a simulation model of transaction processing in client server architecture.
Method: Factor analysis is used to unveil latent (i.e. not directly measurable) quality features represented
by new variables that reflect architecture-specific correlations between metrics. Separate Analyses of
Variance (ANOVA) are then applied to these variables, for interpreting the tradeoffs detected by factor
analysis in terms of the quantified metrics.
Results: The results for the examined transaction processing architecture show three latent quality fea-
tures, the corresponding groups of strongly correlated quality metrics and the impact of architecture
characteristics on the latent quality features.
Conclusion: The proposed method is a systematic way for relating the variability of quality metrics and
the implied tradeoffs to specific architecture characteristics.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Software architecture is defined as: ‘‘the structure or structures of
the system, which comprise software components, the externally visi-
ble properties of those components, and the relationships among
them” [8]. Architecture sets the boundaries for runtime quality
(performance, fault handling, shared resource usage, security
etc.) although it cannot be a basis for precise predictions [17], since
runtime behavior also depends on implementation details. None-
theless, software architecture can support analyses that provide
confidence for the effects of a design decision (e.g. replication) on
quality metrics such as reliability.

We have seen the emergence of methods for analysing quality
in software architectures like for example ATAM [14], SBAR [10],
SAAM [26] and HoPLAA [42]. All methods combine qualitative
analysis heuristics, such as questioning techniques and use cases,
with quantitative analyses specific to particular metrics. However,

a single change in the software architecture may affect multiple
metrics, due to interactions between them [29].

We propose a quantitative method for discovering architecture-
specific metric correlations that are affected by the combined ef-
fect of architecture characteristics (e.g. level of concurrency, degree
of process distribution etc.). These correlations are justified by la-
tent quality features, which cannot be measured directly, but they
can assist in managing potentially complex tradeoffs.

As a proof of concept, the method is applied on a simulation-
based evaluation of a transactional architecture that complies with
the Process Coordinator pattern [21]. The pattern is commonly
used to implement business processes that issue requests to sev-
eral server components. Issues like decomposition of the software
functionality, allocation of shared resources and communication
among the architecture’s components form a complex and inter-
esting design problem. Furthermore, experience reports [8] indi-
cate large variations in server availability, performance and
scalability of distributed transaction management. The quality
metrics investigated in this work are also important for other
architecture patterns like the Broker and the Publish-Subscribe
pattern [21].

0950-5849/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2010.07.006

⇑ Corresponding author. Tel.: +30 2310 998532; fax: +30 2310 998419.
E-mail addresses: anakreon@csd.auth.gr (A. Mentis), katsaros@csd.auth.gr

(P. Katsaros), lef@csd.auth.gr (L. Angelis), gkakaron@teilar.gr (G. Kakarontzas).

Information and Software Technology 52 (2010) 1331–1345

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2010.07.006
mailto:anakreon@csd.auth.gr
mailto:katsaros@csd.auth.gr
mailto:lef@csd.auth.gr
mailto:gkakaron@teilar.gr
http://dx.doi.org/10.1016/j.infsof.2010.07.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


In the first stage of the proposed method, factor analysis is per-
formed. Factor analysis reveals groupings of highly correlated met-
rics and estimates new and fewer uncorrelated variables that
represent the latent quality features. Members of these groupings
are positively or negatively correlated. For the transactional archi-
tecture at hand, factor analysis is applied on data obtained by a ser-
ies of experimental runs of the ACID Sim Tools [1,36] simulator,
developed by the authors.

In the second stage, separate Analyses of Variance (ANOVA) are
performed for each latent quality feature.

The proposed method is a systematic way for relating the vari-
ability of quality metrics and the implied tradeoffs to specific
architecture characteristics. The analysis uses data that can be ob-
tained from an appropriate simulation environment [4,5] or a
benchmarking prototype [7,9,55]. It is based on minimal assump-
tions for the data distributions, irrespective of the analyzed quality
metrics and the architecture characteristics that are taken into ac-
count. We believe that the method is applicable to all architecture
patterns where the investigated metrics matter and that it is effec-
tive in any architecture with interacting quality metrics. However,
the latter remains to be confirmed in future research work.

Section 2 describes the concerns of architecture tradeoff analy-
sis and the published related work. Section 3 provides the process
of the proposed method. Section 4 introduces the metrics of inter-
est in transactional client–server architecture, as well as a syn-
thetic transaction processing workload that utilizes the servers to
a considerable extent. Section 5 shows how the first stage of the
method is performed. Section 6 shows the application of ANOVA
for detecting the architecture characteristics that are critical for
the investigated quality metrics. The paper concludes with a brief
discussion on the benefits of the method and the future research
prospects.

2. Architecture tradeoff analysis and related work

In a software project, the architecture is determined in the early
design phase [23,33,48], where the cost to fix an error is orders of
magnitude less than in later development phases [54]. An architec-
ture validation process [21] evaluates design decisions with respect
to possibly prioritized and conflicting quality requirements. Fulfill-
ment of a quality requirement has positive or negative effects on
other metrics, due to interactions between them. Design decisions
that violate a quality requirement are identified as architectural
risks, while those that improve quality metrics without violating
a requirement are identified as ‘‘good” decisions [22]. A decision
is considered as an architectural risk or an improvement, based
on assumptions for the impact on the system’s behavior. For exam-
ple, in a Process Coordinator architecture, the designer assumes
deterioration of throughput when increasing the degree of process
distribution.

In related bibliography, there are attempts (e.g. [11,19]) to tab-
ulate the effects of the different metrics on each other. Most of
these tables are developed by logical reasoning and experience,
rather than existing evidence on the metrics interaction in some
specific architecture. In [45], the authors argue that metric depen-
dencies are a property of the architecture. Reliability and perfor-
mance, for example, can be in conflict in a design that supports a
checksums and retry pattern, but they are simultaneously opti-
mized in a replication-based architecture.

Quantitative techniques should address the fact that metric
dependencies are architecture-specific and should provide evidence
for the existing tradeoffs. They should be general enough in order
to be applicable in diverse architectures, without being constrained
by the specific quality metrics that are analyzed simultaneously.
Finally, it is desirable to attribute the variability of the metrics to

specific architecture characteristics. This allows identifying what
in ATAM [14] is called a sensitivity point or a tradeoff point. A sen-
sitivity point represents a key architectural decision, which can be a
property of one or more components (and/or component relation-
ships [15]), that is critical for fulfilling a quality requirement. A
tradeoff point is a property that affects multiple quality metrics
and in fact represents one of the most critical decisions in an archi-
tecture design.

Predictable Assembly from Certifiable Components (PACC) [39]
is a framework for the evaluation of the ability of a system to meet
quality requirements. It supports quantitative evaluation for differ-
ent metrics, provided that an appropriate analytic theory is avail-
able in a form called reasoning framework. Our proposal aims to
identify sensitivity and tradeoff points rather than building a

Table 1
Characteristics of quantitative techniques for architecture tradeoff analysis.

Authors, year,
reference

Litoiu et al.
(2000) [32]

Paul et al.
(2003) [44]

Katsaros et al.
(2007) [25]

Scope of quantitative
analysis

Distributed
application
systems

Checkpointing
and recovery
protocols

Distributed
systems with
independent
checkpointing
activities

Tradeoff points Process
replication or
threading
levels and
process
activation
policies

Checkpoint
intervals

Checkpoint
intervals for
the
independent
checkpointing
activities

Quality metrics Utilization of
processes and
devices

Overhead due
to
checkpointing
and recovery
activities and
quality of
recovery

Response times
for the fault-
affected and
the fault-
unaffected
computations

Aim of quantitative
analysis

To determine
process
replication or
threading
levels, in order
to avoid
unnecessarily
queuing delays
for clients and
unnecessarily
high
consumption of
memory

To assess the
protocols’
performance
in different
execution
environments

To determine
checkpoint
intervals
fulfilling the
response-time
goals at the
lowest possible
fault-tolerance
cost. Trades the
gains of a
potential
improvement
in the quality of
recovery
against the
overhead
caused in
normal
processing

Analysis approach Hybrid
mathematical
programming
and analytic
evaluation.

Simulation-
based
measurement.

Simulation-
based
statistical
analysis.

Effects of architecture
characteristics on
the quality metrics

It only takes
into account
the
architecture
characteristics
included in the
model.
Estimations are
produced only
for the tradeoff
points

Implicitly
takes into
account all
simulated
architecture
characteristics

Implicitly takes
into account all
simulated
architecture
characteristics.
Detailed
estimations are
produced only
for the tradeoff
points

1332 A. Mentis et al. / Information and Software Technology 52 (2010) 1331–1345



Download	English	Version:

https://daneshyari.com/en/article/549870

Download	Persian	Version:

https://daneshyari.com/article/549870

Daneshyari.com

https://daneshyari.com/en/article/549870
https://daneshyari.com/article/549870
https://daneshyari.com/

