
Automated verification of security pattern compositions

Jing Dong *, Tu Peng, Yajing Zhao
Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083, USA

a r t i c l e i n f o

Article history:
Received 11 July 2008
Received in revised form 3 October 2009
Accepted 5 October 2009
Available online 14 October 2009

Keywords:
Design pattern
Security
Logics
Process algebra
Model checking

a b s t r a c t

Software security becomes a critically important issue for software development when more and more
malicious attacks explore the security holes in software systems. To avoid security problems, a large soft-
ware system design may reuse good security solutions by applying security patterns. Security patterns
document expert solutions to common security problems and capture best practices on secure software
design and development. Although each security pattern describes a good design guideline, the compo-
sitions of these security patterns may be inconsistent and encounter problems and flaws. Therefore, the
compositions of security patterns may be even insecure. In this paper, we present an approach to auto-
mated verification of the compositions of security patterns by model checking. We formally define the
behavioral aspect of security patterns in CCS through their sequence diagrams. We also prove the faith-
fulness of the transformation from a sequence diagram to its CCS representation. In this way, the prop-
erties of the security patterns can be checked by a model checker when they are composed. Composition
errors and problems can be discovered early in the design stage. We also use two case studies to illustrate
our approach and show its capability to detect composition errors.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

With increasing security attacks, security becomes a critical
requirement for successful software system development. Studies
[37] have shown that design flaws and errors are commonly the
main source of security holes that are explored by attackers. There-
fore, secure software architecture and design are at the heart of
software security. Security becomes one of the most important fac-
tors that affect software quality. Security patterns [33,35] docu-
ment good practices to solve security problems arising frequently
in software development and encourage reusing expert solutions.
A security pattern is a recipe of solving a particular security prob-
lem. It is a design pattern [19] that generally describes a group of
participants as well as their relationships and collaborations,
which achieve some security goals. Each participant in the group
is defined generically in terms of the role it plays in the security
pattern. The benefits of security patterns include the reuse of secu-
rity design solutions instead of the reuse of just a piece of code,
documentation of expert design experience, recording of security
design tradeoffs, capturing of security decisions, and improvement
of communication.

Multiple security patterns can be used in large software sys-
tems to solve many security problems. Combining security pat-
terns may help to reuse expert solutions on different security

problems in the same system. While each security pattern de-
scribes expert experience on solving a particular security problem,
the composition of these security patterns is not always a good
solution. There can be inconsistencies among security patterns
such that some critical security properties may no longer hold.
The inconsistencies between security patterns may cause problems
in the design. Discovering these problems and errors early in the
design stage is important because such design errors are very dif-
ficult to find and correct when they are transformed to implemen-
tation errors. Analysis techniques that help to find such design
errors are crucial to the quality of the software systems.

There are several automated verification techniques, such as
model checking and theorem proving. Model checking has been
initially applied in the hardware community to verify safety and
liveness properties [3,5,16]. It has also been used in the software
community, e.g., in the verifications of web service composition
[20,21,8], in distributed cache coherence analysis [38], in hyperme-
dia applications [11], and in security property analysis [23]. In this
paper, we use model checking techniques to analyze the consis-
tency of security pattern compositions. More specifically, we for-
mally specify the behavioral aspect of the security patterns in the
Calculus of Communicating Systems (CCS) [28], as well as the
properties of each security pattern. We provide a general rule for
specifying security pattern behavior modeled by a sequence dia-
gram in CCS. We define the synchronous message, asynchronous
message, and alternative flows of a UML sequence diagram and
transform them into CCS specifications. We also prove the faithful-
ness of the CCS specification with respect to the sequence

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.10.001

* Corresponding author.
E-mail addresses: jdong@utdallas.edu (J. Dong), txp051000@utdallas.edu (T. Peng),

yxz045100@utdallas.edu (Y. Zhao).

Information and Software Technology 52 (2010) 274–295

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2009.10.001
mailto:jdong@utdallas.edu
mailto:txp051000@utdallas.edu
mailto:yxz045100@utdallas.edu
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

diagrams. A model checker is used to perform the analysis and
check whether the characteristics of each security pattern still hold
after they are composed. Our analysis results show that our ap-
proach is able to find the design errors that may lead to security
holes and flaws.

The remainder of this paper is organized as follows: the next
section describes our analysis techniques on security pattern com-
positions. Section 3 presents two case studies to illustrate our ap-
proach and show the discovery of several subtle security problems
in the design. The last two sections cover related work and
conclusions.

2. Our security analysis techniques

Many security patterns have been identified to solve the recur-
ring security problems, such as authentication, authorization, and
confidentiality during communication. One of the common secu-
rity goals is secure communication between two parties. Unse-
cured communications are often exposed to eavesdropping,
spoofing, sniffer, and replay attacks. The replay attacks copy the
legitimate transactions and resend them. The sniffer attacks just
capture sensitive information for later use. Many of these attacks
can be categorized as man-in-the-middle attacks which cannot
only harm the unsecured network but also VPN where data is ex-
posed at the end points. This exposed data is still subjected to dis-
closure, modification, or duplication. Some of these attacks are
easy to carry out, even for novices. As a consequence, these attacks
may result in huge losses for businesses that need to communicate
sensitive data.

In this section, we first describe model checking techniques. We
then introduce our approach on modeling the behavior of a secu-
rity pattern, which may then be checked by a model checker. We
describe a general way to specify security pattern behavior in
CCS and prove the faithfulness of the transformation from the se-
quence diagrams of a security pattern to our specification.

2.1. Model checking

In order to analyze the compositions of security design patterns,
we apply model checking techniques. Model checking is a method
of verifying algorithmically a formula against a logic model [5].
This verification technique can be automated by model checking
tool (model checker). In our case, we assume a logic model repre-
senting the security patterns and their compositions, as well as a
logic formula representing a property of these patterns. In order
to determine whether the pattern-based system satisfies the prop-
erties, it is checked whether the formula holds in the logic model of
security pattern compositions.

There are several model checking tools, such as SMV [25], SPIN
[22], XMC [30], and CWB-NC [40]. In this paper, we will concentrate
on the CWB-NC model checker since we can use it to specify secu-
rity patterns in process algebra and analyze their composition by
model checking. CWB-NC is a software tool which is capable of
not only model checking but also behavioral equivalence verifica-
tion. As a model checker, CWB-NC requires the user to specify the
systems in CCS and the temporal properties with GCTL [29,40]
(extension of computational tree logic, CTL [17]). It will then check
whether the system satisfies the properties. In behavioral equiva-
lence verification mode, CWB-NC requires the user to specify two
systems in CCS. It will then check whether the two systems are
equivalent under certain constraints. In this paper, we will use
CWB-NC as a model checker. The syntax of CCS is as follows:

spec: binding_list
binding: ‘‘proc” id ‘‘=” agent j‘‘set” id ‘‘=” id_set

agent: ‘‘nil”jid jact ‘‘.” agent jagent ‘‘+” agent jagent ‘‘j” agent
jagent ‘‘n” restriction j‘‘(” agent ‘‘)”

act: id j‘‘”’ id
restriction: id_set

where the system specification consists of a list of bindings. Each
binding is a formula, which either defines a process by using key-
word ‘‘proc” or defines a set by using keyword ‘‘set”. Each agent
defines an expression of actions and operators. An action name is
a user defined id, which represents a system activity. The prime
symbol (’), which is placed in front of an action name, denotes that
this action is an output of the system. The operations between
agents include sequential composition ‘‘.”, non-deterministic
choice ‘‘+”, parallel composition ‘‘j”, and restriction ‘‘n”. Restriction
is used together with parallel composition, to denote that the mes-
sages being restricted are internal messages. Let us consider an
example specification of the behavior of the Observer pattern
[19] in CCS as follows:

* observer *

proc OBSERVER=OSUBJECTjOOBSERVERn{osetstate,oupdate}
proc OSUBJECT=osetstate.ochangestate.’notify.

OSUBJECT1

proc OSUBJECT1=notify.’oupdate.OSUBJECT

proc OOBSERVER=ochange.’osetstate.OOBSERVER+oupdate.

ogetstate.OOBSERVER1

proc OOBSERVER1=OOBSERVER

The system specification of the Observer pattern consists of two
processes, OSUBJECT and OOBSERVER. The interaction of these two
processes is that the OOBSERVER process sends out osetstate mes-
sage to the OSUBJECT which changes its state and sends out oup-
date to all OOBSERVERs. The OOBSERVER processes perform
action ogetstate to update their states and thus keep it consistent
with the OSUBJECT.

Temporal properties are expressed in GCTL, which is an exten-
sion of CTL. The syntax of GCTL is

S ::¼ p j :p j S ^ S j S _ S j Ap j Ep j Gp j Fp

P ::¼ h j :h j S j P ^ P j P _ P j XP j P [P j PRP

where S is state formula, P is path formula. p is atomic proposition,
and h is atomic action proposition. A is a universal quantifier which
means that the formula is true in all paths starting from the current
state. E is an existential quantifier which means that there exists a
path following the current state, such that the formula is true. G is a
path universal quantifier which means that the formula is true for
all the states along the path from the current state. F is a path exis-
tential quantifier which means the formula is true in some state in
the path from the current state. X is a path quantifier which means
the formula is true in the next state in the path from the current
state. G, F and X are always used together with A and E. We illus-
trate the use of quantifiers in Fig. 1.

2.2. Overview of our approach

Fig. 2 illustrates the main characteristics of our approach to
analyzing security pattern compositions. Initially, each security
pattern is formally specified using CCS. The security pattern spec-
ifications are generic in the sense that they capture good design
practice in a domain-independent way. These declarative repre-
sentations, which constitute the models of the security patterns,
are then instantiated into concrete domain-specific representa-
tions. In this way, security design practice can be reused. The in-
stances of security patterns are integrated to form a model R of
the composition of the security patterns, which is then submitted

J. Dong et al. / Information and Software Technology 52 (2010) 274–295 275

Download English Version:

https://daneshyari.com/en/article/549883

Download Persian Version:

https://daneshyari.com/article/549883

Daneshyari.com

https://daneshyari.com/en/article/549883
https://daneshyari.com/article/549883
https://daneshyari.com

