Information and Software Technology 52 (2010) 31-51

..

Contents lists available at ScienceDirect oo

| _SOFTWARE |
___TECHNOLOGY |

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Characterizing software architecture changes: A systematic review

Byron J. Williams?, Jeffrey C. Carver >

2 Department of Computer Science and Engineering, Mississippi State University, United States
b Department of Computer Science, University of Alabama, Box 870290, 101 Houser Hall, Tuscaloosa, AL 35487-0290, United States

ARTICLE INFO ABSTRACT

Article history:

With today’s ever increasing demands on software, software developers must produce software that can

Received 10 December 2008 be changed without the risk of degrading the software architecture. One way to address software changes

Received in revised form 9 July 2009
Accepted 13 July 2009
Available online 18 July 2009

is to characterize their causes and effects. A software change characterization mechanism allows devel-
opers to characterize the effects of a change using different criteria, e.g. the cause of the change, the type
of change that needs to be made, and the part of the system where the change must take place. This infor-

Keywords:

Software architecture
Software maintenance

mation then can be used to illustrate the potential impact of the change. This paper presents a systematic
literature review of software architecture change characteristics. The results of this systematic review
were used to create the Software Architecture Change Characterization Scheme (SACCS). This report

Change characterization addresses key areas involved in making changes to software architecture. SACCS’s purpose is to identify
Software evolution the characteristics of a software change that will have an impact on the high-level software architecture.
Systematic review © 20009 Elsevier B.V. All rights reserved.

Software changes

Contents

B U oL (ot o) P 32
2. BaCKEIOUNA. . . .ottt et e e e e e e e 33
2.1, SOftWare CRAN eot e e e e e e e 33

2.2, Change classifiCation. it e e e e e e e e e e e e 33

3. Research Method e e e 34
3.1, ReSEAICH QUESTIONS . o . vttt ettt ettt ettt e e et e e e et e et e e e e e e e e e e e e e e e e e 34

3.2, Sources selection and SEATCHttt e e e e e e e e e 34

3.3. Data extraction and qUAlity @SSESSITIENLttt ittt ettt et e e e e et e e e e e e e e e e 35

4, RePOITINE The TV W . . . ottt e et ettt et e e e e e e 35
4.1. Research question 1: what are the attributes in existing software change classification taxonomies?. 35
4.1.1. PresCriptive Cham@e By DS, . . oot ittt ettt et e e e e e e e e e e e e e 35

4.1.2. SOUICE COUE AN @S, . . oot ittt ittt ettt e et et et e e e e e e e e e e e e e e e e 36

4.1.3. Organizational inflUBNCE e e e e e e e 37

4.2. Research question 2: how are software architecture elements and relationships used when determining the effects of a software change? 37

4.3. Research question 3: How is the architecture affected by functional and non-functional changes to the system requirements? 37

44, Research Question 4: How is the impact of architecture changes qualitatively assessed?ttt enennnn.. 38

4.5. Research Question 5: What types of architecture changes can be made to common architectural views? 38

4.6. SACCS eXCIUSION CIItEITA ottt ettt et et ettt 39

5. Software architecture change characterization scheme (SACCS).ttt ittt e e e et et e ettt et ettt et 39
5.1. Characterization SCReME OVEIVIEW.ttt ettt et ettt ettt et et e e e e e et ettt et et e e 39

5.2, General ChaTaCteriSTiCs . . . o .ottt ettt ettt et et e 39
520 DR Y (o] 0 AT 1o (0 o T P 39

5.2.2. SOUICE . o ettt ettt ettt e et et e e e e e e e e e e e e e e e 40

5.2.3. Criticality/IMPOItanCe. . . . o\ ottt ittt ettt e et et et et e e e e e e e e e e 40

oI S B 1 /) (] T W14 0 1<) w =) 1 Lol <SP 40

oI T - 1< (o) 40

* Corresponding author. Tel.: +1 205 348 9829; fax: +1 250 348 0219.
E-mail addresses: bjw1@cse.msstate.edu (B.]. Williams), carver@cs.ua.edu (J.C. Carver).

0950-5849/% -

see front matter © 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2009.07.002

http://dx.doi.org/10.1016/j.infsof.2009.07.002
mailto:bjw1@cse.msstate.edu
mailto:carver@cs.ua.edu
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

32 BJ. Williams, J.C. Carver/Information and Software Technology 52 (2010) 31-51

5.2.6. Granulareffect
5.2.7. Propertiesc..uuiuiiit i
52.8. Features........... ... e
5.2.9. Quality attributes

52.10. Logical........ccuuiiii i
5211. Runtime..................oiiiiiiiiiiiiiinn..
5.2.12. Complete general characterization scheme

5.3. Specific characterization............ oo,
53.1. Logical Views.ttt

5.3.2. Runtime VIewWSooiiiiiinenenennnnnn.

5.4. Excluded attributes.t

6. Research implications and conclusions.
Acknowledgementsiiiii i e
APpPeNdix A. .. e e
Appendix B. e
Referencesttt e e e

1. Introduction

Software change is inevitable. All software systems must evolve
to meet the ever-expanding needs of its users. Therefore, it is vital
for organizations to perform software maintenance in such a way
as to reduce complications arising from changes and the potential
for new bugs to be introduced by the change. Software developers
need a comprehensive solution that helps them understand
changes and their impact. This understanding is important be-
cause, as changes are made architectural complexity tends to in-
crease, which will likely result in an increase in the number of
bugs introduced [50,65,114]. Architectural complexity measures
the extent to which the behavior of one component can affect
the behavior of other components from an architectural standpoint
[16]. A complex system is potentially less understandable for
developers resulting in decreased quality and a system that is more
difficult to maintain [13]. Software quality is the degree to which
software possesses a desired combination of quality attributes
[1]. Due to the number and frequency of changes that mature sys-
tems undergo, software maintenance has been regarded as the
most expensive phase of the software lifecycle.

Late-lifecycle changes are changes that occur after at least one
cycle of the development process has been completed and a work-
ing version of the system exists. These unavoidable changes pose
an especially high risk for developers. Understanding late-lifecycle
changes is important because of their high cost, both in money and
effort, especially when they are due to requirements changes. Fur-
thermore, these late-lifecycle changes tend to be the most crucial
changes because they are the result of better understood customer
and end-user needs. As these late changes are made, system com-
plexity tends to increase. Different names have been given to this
phenomenon of increasing complexity. Eick, et al., called the prob-
lem code decay. They examined a 15-year old system and found
that it became much harder to change over time. One cause of this
decay was the violation of the original architectural design of the
system [50]. Lindvall, et al., called the problem architectural degen-
eration. This term is used to describe the deviation of the architec-
ture They found that even for small systems the architecture must
be restructured when the difficulty of making a change becomes
disproportionately large relative to its size [93]. Parnas used the
term software aging to identify the increased complexity and de-
graded structure of a system. He noted that a degraded structure
or architecture would increase the number of bugs introduced dur-
ing incremental changes [114]. And finally, Brooks stated that “all
repairs tend to destroy the structure, to increase the entropy and
disorder of the system...more and more time is spent on fixing
flaws introduced by earlier fixes” [35].

Flexibility is a quality property of the system that defines the ex-
tent in which the system allows for unplanned modifications [116].
Flexibility is reduced when late changes draw the system away
from its original design. There are many sources of late-lifecycle
changes including: defect repair, adapting to changing market con-
ditions or software environments, and evolving user requirements.
Due to the time pressure resulting from these crucial late-lifecycle
changes, developers often cannot fully evaluate the architectural
impact of each change. As a result, the architecture degrades (i.e.,
becomes increasingly difficult to change), escalating the likelihood
of faults and the difficulty of making future changes [50,84,114].

When dealing with late-lifecycle changes, it is important to fo-
cus on the software architecture, a high-level representation that
defines the major structure and interactions of the internal compo-
nents of a system and the interactions between the system and its
environment [59]. When a change affects the architecture, the ori-
ginal architectural model must be updated to ensure that the sys-
tem remains flexible and continues to function as originally
designed. When an architectural change causes the interactions
to become more complex, which in turn causes the system to be
more difficult to change, the architecture is degenerating. Architec-
tural degeneration is a mismatch between the actual functions of
the system and its original design. Because architectural degener-
ation is confusing for developers, the system must undergo either
a major reengineering effort or face early retirement [65].

To address these problems, developers need a way to better
understand the effects of a change prior to making it [100]. The
high-level goal of this research is to:

Identify and characterize the types of changes that affect software
and develop a framework for analysis and understanding of change
requests.

This paper presents a systematic literature review of software
change. The goal of the review was to identify and characterize
software architecture changes to determine the types of changes
that impact software architectures. A systematic literature review
is a formalized, repeatable process in which researchers systemat-
ically search a body of literature to document the state of knowl-
edge on a particular subject. A systematic review provides the
researchers with more confidence in their conclusions compared
with an ad hoc review. A needs assessment conducted prior to
the review indicated several key areas that must be addressed to
improve the software change process.

e Change understanding and architecture analysis: Prior to making a
change, it is important for a software developer to understand
how it will impact the architecture. A change analysis tool

Download English Version:

https://daneshyari.com/en/article/549891

Download Persian Version:

https://daneshyari.com/article/549891

Daneshyari.com

https://daneshyari.com/en/article/549891
https://daneshyari.com/article/549891
https://daneshyari.com

