
Software development effort prediction: A study on the factors impacting
the accuracy of fuzzy logic systems

Zeeshan Muzaffar a,*, Moataz A. Ahmed b,1

a Department of Computer Science, University of Western Ontario, Canada
b LEROS Technologies Corporation, Fairfax, VA 22030, USA

a r t i c l e i n f o

Article history:
Received 20 January 2009
Received in revised form 2 August 2009
Accepted 8 August 2009
Available online 14 August 2009

Keywords:
Effort prediction
Fuzzy logic
COCOMO
Imprecision
Uncertainty

a b s t r a c t

Reliable effort prediction remains an ongoing challenge to software engineers. Traditional approaches to
effort prediction such as the use of models derived from historical data, or the use of expert opinion are
plagued with issues pertaining to their effectiveness and robustness. These issues are more pronounced
when the effort prediction is used during the early phases of the software development lifecycle. Recent
works have demonstrated promising results obtained with the use of fuzzy logic. Fuzzy logic based effort
prediction systems can deal better with imprecision, which characterizes the early phases of most soft-
ware development projects, for example requirements development, whose effort predictors along with
their relationships to effort are characterized as being even more imprecise and uncertain than those of
later development phases, for example design. Fuzzy logic based prediction systems could produce fur-
ther better estimates provided that various parameters and factors pertaining to fuzzy logic are carefully
set. In this paper, we present an empirical study, which shows that the prediction accuracy of a fuzzy
logic based effort prediction system is highly dependent on the system architecture, the corresponding
parameters, and the training algorithms.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Software cost estimation, generally, refers to the prediction of
the likely amount of effort, staffing level, time, and materials nec-
essary to accomplish the required development task [15]. The ef-
fort prediction aspect of software cost estimation is concerned
with the prediction of the person-hour required to accomplish
the tasks. The development of effective software effort prediction
models has been a research target for quite a long time [5]. The tra-
ditional parametric approaches at building effort models involve
one or more mathematical formulae that, typically, have been de-
rived through statistical data analysis (e.g., regression analysis) of
historical data. These approaches identify key contributors to effort
and use historical organizational projects data to generate a set of
mathematical formulae that relates these contributors to effort.
Such a set of mathematical formulae are often referred to as
parametric model because alternative scenarios can be defined
by changing the assumed values of a set of fixed coefficients

(parameters). Typically, the accuracy of these parametric effort
prediction models is improved via calibration to the target devel-
opment environment. The calibration activity involves adjusting
the parameters of the formulae [3,8,30]. Examples of popular effort
prediction models include Constructive Cost Model (COCOMO) [7],
Constructive Cost Model II (COCOMO II) [6], and Software Life Cy-
cle Management (SLIM) [22,24]. These models are centered on
using the future software size as the major determinant of effort.
Detailed critical surveys on traditional effort prediction models
are presented in [5,9]. However, such models have been shown
to have a number of problems:

1. Difficulty handling categorical data (data that are defined by a
range of values) [26].

2. Difficulty drawing conclusions or making judgments based on
available data (that is, a lack of reasoning capabilities) [25,27].

3. Difficulty adapting to new environments as the models (i.e., for-
mulae) are typically company specific [27].

4. Use of historical data has some limitations because predictors
and relationships used to predict software development effort
can vary over time, and/or differ among software development
environments [29].

5. Difficulty capturing complex sets of relationships that are pres-
ent in many software development environments (e.g., the
effect of each variable in the model on the overall estimation

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.08.001

* Corresponding author. Tel.: +1 703 691 8122x225; fax: +1 703 691 8125.
E-mail addresses: smuzaff2@csd.uwo.ca (Z. Muzaffar), mahmed5@gmu.edu

(M.A. Ahmed).
1 This research was conducted while Dr. Ahmed was at King Fahd University of

Petroleum and Minerals, Dhahran 31261, Saudi Arabia. He is currently CTO with
LEROS Technologies Corporation and Adjunct Professor with George Mason Univer-
sity, Fairfax, VA 22030, USA.

Information and Software Technology 52 (2010) 92–109

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2009.08.001
mailto:smuzaff2@csd.uwo.ca
mailto:mahmed5@gmu.edu
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


made using the model). There are many factors, i.e., cost drivers
[7] that can play a vital role in estimating software develop-
ment effort. It is very difficult (if not impossible) for a model
to consider all such factors within a mathematical model [17].

6. Difficulty incorporating experts’ input; i.e., lack of transparency
[1].

7. Difficulty handling uncertain data, i.e., data that contains noisy
measurements [22].

The problems with traditional parametric models have empha-
sized the need for other techniques, such as Price-to-Win [7], Par-
kinson [7], expert judgment [3,7], and models based on machine
learning (ML) approaches [26,28]. The ML approaches include: fuz-
zy logic (FL), analogy, regression trees, rule induction, Bayesian be-
lief networks (BBN) [4], evolutionary computation (EC), and
artificial neural networks (ANN). For a detailed discussion and
evaluation of prominent ML-based effort prediction models, the
reader can consult the survey work by Saliu and Ahmed [26].

The accuracy of any ML-based software effort prediction system
depends on the setting of the parameters of the underlying tech-
nique. For example, with ANN, the topology as well as the neuron
functions affect the network performance (e.g., its accuracy). Sim-
ilarly, with EC (e.g., genetic algorithms), the selection of the oper-
ators as well as the corresponding probability values has a great
impact on the performance. Software effort prediction systems
using FL are no exceptions. In this paper, we present a study of
the impact of major factors on the prediction accuracy.

The paper is organized as follows. In Section 2, we give a liter-
ature review of FLS based effort prediction approaches. Section 3
provides a brief background on FL and FL systems. Section 4 pre-
sents different factors impacting the accuracy of FL-based effort
prediction systems. Section 5 presents experiments and results.
Section 6 concludes the paper and points out possible directions
for future research.

2. Effort prediction systems

Effort prediction systems involve a prediction model (with asso-
ciated prediction procedures) and measures. An effort prediction
model allows one to predict the effort as a function of several other
variables. These variables represent key contributors to effort; they
are typically called predictors—they are mainly characteristics of
the future software and the corresponding development environ-
ment. Measures are used to assess such predictors for a given
development project; the resulting assessments are fed into the
model to predict the effort for that project. There are at least two
important sources of information for building the prediction mod-
el: historical data and human experts. Historical data provide
numerical quantitative measurements from past projects regarding
the predictors and effort. Human experts use their past experience
to provide qualitative descriptions of the correlation between pre-
dictors and effort.

Historical data are typically analyzed using means of regression
analysis to build a parametric prediction model. Regression analy-
sis assumes that all predictors are quantitative so that arithmetic
operations such as addition and multiplication are meaningful
[13]. Accordingly, regression-based models can only make use of
quantitative measurements and have difficulties incorporating
qualitative judgments.

As an example of a parametric quantitative prediction model,
let us consider Intermediate COCOMO II [6]. It takes the following
as input: (1) the estimated size of the software product in thou-
sands of Delivered Source Instructions (KDSI) adjusted for code re-
use [8], (2) the project development mode given as a constant

value B (also called the scaling factor), and (3) seventeen cost driv-
ers that have impact on the overall project effort. The development
mode reflects one of three categories of software development
modes: organic, semi-detached, and embedded. Respectively, B
takes three values, {1.05, 1.12, 1.20}, which reflect the difficulty
of the development. The cost drivers have up to six levels of rating:
very low, low, nominal, high, very high, and extra high. Each rating
has a corresponding real number (effort multiplier), based on the
degree to which the cost driver can influence productivity.

The estimated effort in person-months (PM) for the Intermedi-
ate COCOMO is given as:

Effort ¼ A� ½size�B �
Y17

i¼1

EMi ð1Þ

where A � [size]B is termed as Nominal Effort,
Q17

i¼1EMi is called Ef-
fort Adjustment Factor (EAF) and EMi is effort multiplier corre-
sponding to a particular cost driver. The constant A is known as
productivity coefficient. It takes the values 3.2, 3.0, and 2.8 for the
three different modes, respectively.

To describe the nominal effort prediction model, experts may
give a similar model but in a qualitative form such as [1]:

IF mode is Organic AND size is High THEN effort is Medium.
IF mode is Semi-detached AND size is High THEN effort is a Little-
High.
IF mode is Embedded AND size is High THEN effort is High.
IF mode is Organic AND size is Medium THEN effort is Low.
. . .

Or in general,
IF mode is mj AND size is si THEN effort is Eji (1 6 i 6 n,1 6 j 6 3)

where mj(1 6 j 6 3) are qualitative values for the variable mode,
(1 6 i 6 n) are qualitative values for the variable size, and
Eji (1 6 i 6 n,1 6 j 6 3) are qualitative values for the variable
effort.

Similarly, predictors’ assessments come in two different forms:
qualitative and quantitative. For example, one may ask an expert
about his/her perception regarding the future size of the software
based on information available during requirements specification.
On the other hand, one may use mathematical models to predict
the future size of the software based on information available from
requirements development. The former assessment would be in a
qualitative form whereas the latter would be in a quantitative
form.

According to a recent study by Jørgensen and Shepperd [14], the
experts’ judgment based software effort prediction approaches are
the most common used approaches by the software industry.
Moreover, a study by Hodgkinson and Garratt claims that, in cer-
tain situations, prediction by expert judgment was better than all
regression-based models [10]. The problem with expert judgment
approaches, though, is that the experts are not always available,
and accordingly a systematic consistent effort prediction is not
possible. It would be highly beneficial if the software industry
could be able to document and reuse experts’ knowledge in differ-
ent projects. This raised the need for prediction models that allow
incorporating knowledge provided by experts in a systematic and
efficient manner. The problem is that experts provide knowledge
in a qualitative and imprecise form; human beings like to use lin-
guistic terms (e.g., small size, low complexity, and highly safety crit-
ical, each of which represents a range of values) that depict their
interval of confidence regarding a correlation or a perception.
Therefore, the desirable models should be able to handle both
quantitative and qualitative information simultaneously.

With its powerful linguistic representation, FL can represent
imprecision in qualitative inputs and outputs [27]. Such represen-

Z. Muzaffar, M.A. Ahmed / Information and Software Technology 52 (2010) 92–109 93



Download	English	Version:

https://daneshyari.com/en/article/549895

Download	Persian	Version:

https://daneshyari.com/article/549895

Daneshyari.com

https://daneshyari.com/en/article/549895
https://daneshyari.com/article/549895
https://daneshyari.com/

