
Requirements-based Access Control Analysis and Policy Specification (ReCAPS)

Qingfeng He a,*,1, Annie I. Antón b

a ABB Inc., US Corporate Research, 940 Main Campus Dr. Suite 300, Raleigh, NC 27606, USA
b Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206, USA

a r t i c l e i n f o

Article history:
Received 22 August 2008
Received in revised form 17 November 2008
Accepted 23 November 2008
Available online 10 January 2009

Keywords:
Requirements analysis
Security
Access control

a b s t r a c t

Access control (AC) is a mechanism for achieving confidentiality and integrity in software systems. Access
control policies (ACPs) express rules concerning who can access what information, and under what con-
ditions. ACP specification is not an explicit part of the software development process and is often isolated
from requirements analysis activities, leaving systems vulnerable to security breaches because policies
are specified without ensuring compliance with system requirements. In this paper, we present the
Requirements-based Access Control Analysis and Policy Specification (ReCAPS) method for deriving
and specifying ACPs, and discuss three validation efforts. The method integrates policy specification into
the software development process, ensures consistency across software artifacts, and provides prescrip-
tive guidance for how to specify ACPs. It also improves the quality of requirements specifications and sys-
tem designs by clarifying ambiguities and resolving conflicts across these artifacts during the analysis,
making a significant step towards ensuring that policies are enforced in a manner consistent with a sys-
tem’s requirements specifications. To date, the method has been applied within the context of four oper-
ational systems. Additionally, we have conducted an empirical study to evaluate its usefulness and
effectiveness. A software tool, the Security and Privacy Requirements Analysis Tool (SPRAT), was devel-
oped to support ReCAPS analysis activities.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Data security and privacy is important in every software sys-
tem, but is particularly vulnerable in critical infrastructure sys-
tems, such as medical, immigration, and financial information
systems. Specifying correct policies to control users’ access to a
system and its resources is essential for protecting data security
and privacy. Access control (AC) is a mechanism for achieving con-
fidentiality and integrity in software systems to keep sensitive data
private [1,2]. Throughout this paper, confidentiality means that
information is not disclosed to unauthorized persons, processes
or devices. Integrity means that unauthorized persons, processes
or devices cannot modify information. Privacy implies that data is
protected so that it is used only for authorized business purposes,
based on legal requirements, corporate policies and end-user
choices.

There are two major challenges in an access control system: (a)
defining correct and complete policies to control users’ access to
the system and its resources, and (b) ensuring the resulting policies

comply with the system requirements and high-level security/pri-
vacy policies. Proper access control analysis requires one to exam-
ine system requirements in tandem with organizational security
and privacy policies to specify access control polices (ACPs). Defin-
ing correct and complete ACPs is both a conceptually and practi-
cally complex process because software systems can have many
users performing various tasks and many resources that need to
be protected [3,4]. Organizational complexity presents another
challenge—it is difficult to identify and agree upon a common set
of roles and associated permissions within an organization that
may have hundreds of roles that must be considered.

ACP specification is not an explicit part of traditional software
development processes and is often isolated from requirements
analysis activities, leaving systems vulnerable to security breaches.
Researchers have recognized the need to bridge the gap between
requirements analysis and complex ACP specification [5]. Existing
RE approaches (e.g., KAOS [6], i* [7] and the analytical role-model-
ing framework [5]) provide limited support as we discuss herein.
However, methodological support is needed to guide software
and security engineers (referred as analysts in this paper) as they
specify a system’s ACPs. To this end, we have developed the
Requirements-based Access Control Analysis and Policy Specifica-
tion (ReCAPS) method [8] to integrate these activities, improve
software quality and develop policy- and requirements-compliant
systems. In this paper, we present the ReCAPS method, which

0950-5849/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.11.005

* Corresponding author. Tel.: +1 919 807 5709; fax: +1 919 856 2411.
E-mail addresses: heq@acm.org, qingfeng.he@us.abb.com (Q. He), aianton@

ncsu.edu (A.I. Antón).
1 This work was completed while the author was at North Carolina State

University.

Information and Software Technology 51 (2009) 993–1009

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate/ infsof

mailto:heq@acm.org
mailto:qingfeng.he@us.abb.com
mailto:aianton@ncsu.edu
mailto:aianton@ncsu.edu
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


provides prescriptive guidance for specifying ACPs, improving the
quality of a software system’s artifacts (e.g., software documenta-
tion), and ensuring compliance between access policies and system
requirements.

To date, the ReCAPS method has been applied within the con-
text of four operational systems, two of which are discussed in this
paper. Additionally, an empirical study was completed to evaluate
its usefulness and effectiveness. Finally, a software tool, the Secu-
rity and Privacy Requirements Analysis Tool (SPRAT), was devel-
oped to support ReCAPS analysis activities.

The remainder of the paper is structured as follows. Section 2
summarizes the most relevant work. Section 3 provides an over-
view of the ReCAPS method. Section 4 discusses application of
the ReCAPS method within the context of two operational systems.
Section 5 details an empirical study to evaluate the effectiveness
and usefulness of the ReCAPS method. Section 6 briefly summa-
rizes the SPRAT (Security and Privacy Requirements Analysis Tool)
that supports the ReCAPS analysis activities. Finally, Section 7 pro-
vides a discussion and summarizes our plans for future work.

2. Background and related work

Requirements-based access control analysis and policy specifi-
cation builds upon prior work in key areas: access control policies
for security and in requirements engineering, as well as policy
specification and software development. This section provides an
overview of this related work.

2.1. Access control policies in security

An access control system is typically described in three ways:
access control policies, access control models and access control
mechanisms [2]. Access control policies define rules concerning
who can access what information, and under what conditions [1].
These policies are enforced via a mechanism that mediates access
requests and makes grant/deny decisions. The access control mech-
anism defines the low-level functions that implement the controls
imposed by the policies. It must work as a reference monitor [2], a
trusted component intercepting each and every request to the sys-
tem. Access control models provide a formal representation of an ac-
cess control system. They provide ways to reason about the
policies they support and prove the security properties of the ac-
cess control system. Access control models provide a level of
abstraction between policies and mechanisms, enabling the design
of implementation mechanisms to enforce multiple policies in var-
ious computing environments.

ACPs can be broadly grouped into three main policy categories:
Discretionary Access Control (DAC), Mandatory Access Control
(MAC), and Role-Based Access Control (RBAC). DAC policies enforce
access control based on the identity of the requestor and the expli-
cit rules specifying who can or cannot perform specific actions on
specific objects. An example DAC policy describes user Alice is al-
lowed to read file A. Early discretionary access control models,
such as the access control matrix model [9] and the HRU (Harri-
son–Ruzzo–Ullman) model [10], provide a basic framework for
describing DAC policies. In these models, it is the users’ discretion
to pass their privileges on to other users, leaving DAC policies vul-
nerable to Trojan Horse attacks [2].

MAC policies enforce access control based on the security classi-
fications of subjects and objects. For example, the lattice-based
multilevel security policy [11], policies represented by the Bell–
LaPadula model [12,13] and the Biba model [14] are MAC policies.
A specific example of a lattice-based security policy could be as fol-
lows: the sensitivity of all information is classified as either Top Se-
cret, Secret, Confidential, or Unclassified. These four levels form a

lattice. A user Bob who possesses a classification of Secret can ac-
cess information that is classified Secret, Confidential or Unclassi-
fied, but not Top Secret. MAC policies prevent indirect
information leakages (e.g., Trojan Horse attacks), but are still vul-
nerable to covert channel attacks [2,15].

RBAC policies employ roles to simplify authorization manage-
ment for enforcing enterprise-specific security policies [1,16].
The RBAC model is an alternative to traditional DAC and MAC mod-
els and has received increased attention in commercial applica-
tions, such as the Oracle 9i DBMS [17]. RBAC is now an American
National Standard (ANSI INCITS 359-2004).

Instead of considering ACP specification from a holistic, real-
systems perspective as we advocate in this paper, ACP specification
research to date has been narrow in its focus (e.g., uniform or flex-
ible ways to specify ACPs [18], specifying ACPs for XML documents
[19], etc.). There are few reported methods and experiences that
[4] describe ACP specification in real software systems. In the RBAC
literature, researchers are investigating role engineering, the pro-
cess of defining roles and privileges as well as assigning privileges
to roles [20]. Several role-engineering approaches employ require-
ments engineering concepts. For example, Fernandez and Hawkins
suggest deriving the needed rights for roles from use cases [21].
Neumann and Strembeck propose a scenario-driven approach for
engineering functional roles in RBAC [22]. Role engineering is spe-
cific to RBAC, whereas the ReCAPS method is a more general ap-
proach for specifying ACPs.

2.2. Elements of access control policies

An access control policy is comprised of a set of access control
rules. A rule can have various modes (e.g., allow/deny/oblige/re-
frain). Since allow and deny rules are the most common ones, this
paper focuses on these two kinds of rules. Allow rules authorize a
subject to access a particular object. Deny rules explicitly prohibit
a subject from accessing a particular object. When a subject re-
quests to perform an action on an object, the corresponding rules
are evaluated by the enforcement engine for that request. A typi-
cal access control rule is expressed as a 3-tuple hsubject, object,
actioni, such that a subject can perform some action on an object
[23]. A subject is a user or a program agent, or any entity that
may access objects. An object is a data field, a table, a procedure,
an application or any entity to which access is restricted. An action
is a simple operation (e.g., read or write) or an abstract operation
(e.g., deposit or withdraw). The ReCAPS method extends the typi-
cal AC rule 3-tuple to include conditions and obligations as we
now discuss.

An ACP may express conditions that must be satisfied before an
access request can be granted. For example, in healthcare applica-
tions, the location from which the access request originates might
affect the grant/deny decision [24]. If an access request is from the
emergency room, then (according to the requirements) the request
may need to be granted. In this case, we can specify the location of
the request is emergency room as a condition for the AC rule. Obliga-
tions [25] are actions that must be fulfilled if a request to access an
object is granted. For example, consider the following policy state-
ment: require affiliates to destroy customer data after service is com-
pleted. In this case, ‘‘destroy customer data” is an obligation that
must be satisfied by affiliates. Obligation-based security policies
can be enforced if they can be completely resolved within an atom-
ic execution [26]. If the obligation is not an immediate action (e.g.,
it is a task that will be executed in the future), monitoring and
auditing its execution might be sufficient for enforcement [25].

In requirements specification, we are concerned with the ac-
tions for which each actor (subject) is responsible, and the condi-
tions under which each action can occur (constraints and pre-
conditions). Thus, in the ReCAPS method, AC elements may be

994 Q. He, A.I. Antón / Information and Software Technology 51 (2009) 993–1009



Download English Version:

https://daneshyari.com/en/article/549901

Download Persian Version:

https://daneshyari.com/article/549901

Daneshyari.com

https://daneshyari.com/en/article/549901
https://daneshyari.com/article/549901
https://daneshyari.com

