ARTICLE IN PRESS

Radiation Physics and Chemistry (xxxx) xxxx-xxxx

Contents lists available at ScienceDirect

Radiation Physics and Chemistry

journal homepage: www.elsevier.com/locate/radphyschem

Radiation exposure from conventional radiographic examinations in very and extremely low birth weight patients

M.L.C. Gois^a, H.R. Schelin^{a,*}, V. Denyak^{a,b}, A.P. Bunick^a, A. Legnani^a, S.A. Paschuk^c

^a Pelé Pequeno Príncipe Research Institute, Av. Silva Jardim, 1632, Curitiba PR 80250-060, Brazil

^b National Science Center 'Kharkov Institute of Physics and Technology', Akademicheskaya 1, Kharkiv 61108, Ukraine

^c Federal University of Technology, Av. Sete de Setembro, 3165, Curitiba PR 80230-90, Brazil

ARTICLE INFO

Keywords: Dosimetry Neonatal intensive care unit Very low birth weight Extremely low birth weight

ABSTRACT

The survival of very premature neonates has improved significantly at the last decades owing to the utilization of modern intensive care interventions that usually requires prolonged hospitalisation and are accompanied by frequent radiographic examinations. Their elevated radiosensitivity and numerous examinations combined with their greater remaining lifetime raise the issue of high risk for radiation-induced malignancies. Because it is presently impossible to substitute this type of examinations with others that do not involve radiation exposure, investigations on a hospital's routine practices becomes relevant. In this work, we present the results of an investigation on the radiation exposure of patients with birth weight lower than 1500 g in one paediatric hospital in Brazil. We analyse some important patient characteristics, like weight, gestational age, length of stay, and number of radiographs performed in the neonatal intensive care unit, in connection with the patient dose. The obtained results are compared with the existing information from other studies.

1. Introduction

The survival of very premature neonates has improved significantly at the last decades owing to the utilization of modern intensive care interventions that usually requires prolonged hospitalisation and are accompanied by frequent radiographic examinations.

Currently, the radiosensitivity of a newborn is considered to be higher than that of a mature child or an adult. Their elevated radiosensitivity and numerous examinations combined with their greater remaining lifetime raise the issue of high risk for radiation-induced malignancies.

Because it is presently impossible to substitute this type of examinations with others that do not involve radiation exposure, investigations on a hospital's routine practices becomes relevant. The main goal of such studies is to determine the radiographic techniques that result in the lowest possible dose in the case of un-cooperative patients that are surrounded with a number of life-support systems and X-ray equipment that was not specially designed for such small patients.

Among the studies performed in neonatal intensive care units (NICUs), some investigations separate patients with low weight in their analyses (Dabin et al., 2013; Smans et al., 2008; Datz et al., 2008; Donadieu et al., 2006; Ono et al., 2003) and only a few have

concentrated on such patients (Arad et al., 2009; Puch-Kapst et al., 2009; Sutton et al., 1998; Wilson-Costello et al., 1996).

In this work, we present the results of an investigation on the radiation exposure of patients with birth weight lower than 1500 g in one paediatric hospital in Brazil. Additionally, we analyse some important patient characteristics, like weight, gestational age (GA), length of stay (LOS), and number of radiographs performed in the NICU, in connection with the patient dose. The obtained results are compared with the existing information from other studies to find the common factors, which influence the dose received by preterm infants.

2. Materials and methods

The study was performed at the Waldemar Monastier public hospital, which specialises in the care of children and adolescents (Campo Largo, Brazil). The research project was approved be the Ethical Committee of the Hospital, which is associated with the Brazilian Federal Government.

The NICU of the hospital has 20 beds. This hospital does not perform cardiac or neurological surgery. For these procedures, patients are transferred to other institutions and are returned to the hospital after the surgery and recovery period.

When admitted to the hospital, premature newborns are placed in

http://dx.doi.org/10.1016/j.radphyschem.2017.02.013

^{*} Corresponding author.

E-mail address: schelin2@gmail.com (H.R. Schelin).

Received 29 September 2016; Received in revised form 31 January 2017; Accepted 4 February 2017 0969-806X/ \odot 2017 Elsevier Ltd. All rights reserved.

Table 1

Patient diagnoses.

Diagnosis	Number of neonates
Hyaline membrane disease	25
Patent ductus arteriosus	16
Bronchopulmonary dysplasia	13
Late neonatal infection	10
Early neonatal infection	7
Retinopathy	6
Intra-periventricular haemorrhage Grade III	6
Enterocolitis	5
Pulmonary haemorrhage	3
Intra-periventricular haemorrhage Grade II	3
Intra-periventricular haemorrhage Grade IV	3

Table 3

Birth weight group (g)	Length of stay (days)		Reference	
	Mean	Range		
< 750	163	133–182	This work	
	115	77–175	Wilson-Costello et al. (1996)	
	172	110–389	Ono et al. (2003)	
	98	2–291	Puch-Kapst et al. (2009)	
750–1000	97	36–167	This work	
	126	74–236	Ono et al. (2003)	
	75	6–135	Puch-Kapst et al. (2009)	
1000-1250	53	36–93	This work	
	52	14–247	Puch-Kapst et al. (2009)	
1250-1500	55	21–114	This work	
	46	14–286	Puch-Kapst et al. (2009)	
< 1500	73	21–182	This work	
	60	4–239	Sutton et al. (1998)	
	56	2–291	Puch-Kapst et al. (2009)	
1000-1500	54	21–114	This work	
	74	40–139	Ono et al. (2003)	

The patient's sex, GA, birth weight and time spent in the NICU were

recorded. Furthermore, the patient's weight was measured several

times during hospitalisation and a weight gain chart was constructed. A

third-degree polynomial was used to determine the weight on the day

Fanem infant incubator model Vision 2186. Upon increase of their size (height and weight), they are transferred from the incubator to a Gigante infant warmer (model Neosolution).

All radiology examinations requested by neonatologists are performed in the NICU using VMI mobile X-ray equipment (model Aquilla Plus 300, 2008) with a CR image receptor and 4.3 mm Al total beam filtration.

The investigation included only infants with birth weight below 1500 g that were admitted to the NICU and discharged between January 2013 and December 2014. For patients temporarily transferred to other institutions for specific procedures, only the radiographic procedures performed at the hospital were considered.

Table 2

Patient characteristics.

Birth weight	Gestational age (weeks)		Birth weight (g)		Reference
group (g)	Mean	Range or stand. dev.	Mean	Range or stand. dev.	
< 750	27.0 25.4	24–33 22–27	648 671	510–740 490–745	This work Wilson-Costello et al. (1996)
	26.7 26.0	24–32 24–31	662 640	536–735 445–740	Ono et al. (2003) Puch-Kapst et al. (2009)
750–1000	28.2 27.3 27.5	26–33 24–34 25–36	875 871 930	770–970 756–998 770–995	This work Ono et al. (2003) Puch-Kapst et al. (2009)
1000–1250	29.9 30.0	27–33 27–35	1135 1150	1000–1240 1015–1250	This work Puch-Kapst et al. (2009)
1250-1500	30.6 30.0	28–36 28–36	1376 1356	1260–1500 1260–1500	This work Puch-Kapst et al. (2009)
< 1500	29.5 28.8 29.5	24–36 24–34 24–36	1129 1110 1100	510–1500 540–1480 445–1500	This work Sutton et al. (1998) Puch-Kapst et al. (2009)
1000-1500	30.4 31.0	27–36 26–40	1296 1286	1000–1500 1001–1499	This work Ono et al. (2003)
< 1000	28.0 28.3 27.0	2.3 2.1 1.9	843 859 824	113 100 132	This work Arad et al. (2009) Arad et al. (2009)

Radiation Physics and Chemistry (xxxx) xxxx-xxxx

Download English Version:

https://daneshyari.com/en/article/5499088

Download Persian Version:

https://daneshyari.com/article/5499088

Daneshyari.com