
An aspect-oriented methodology for designing secure applications

Geri Georg a, Indrakshi Ray a,*, Kyriakos Anastasakis b, Behzad Bordbar b, Manachai Toahchoodee a,
Siv Hilde Houmb c

a Computer Science Department, Colorado State University, 1873 Campus Delivery, Fort Collins, CO 80528, USA
b School of Computer Science, University of Birmingham, Edgbaston, Birmingham, UK
c Department of Computer Science, University of Twente, Enschede, Netherlands

a r t i c l e i n f o

Article history:
Available online 13 May 2008

Keywords:
Alloy
Aspect-oriented modeling
Authentication
Secure systems design
Security analysis
UML

a b s t r a c t

We propose a methodology, based on aspect-oriented modeling (AOM), for incorporating security mech-
anisms in an application. The functionality of the application is described using the primary model and
the attacks are specified using aspects. The attack aspect is composed with the primary model to obtain
the misuse model. The misuse model describes how much the application can be compromised. If the
results are unacceptable, then some security mechanism must be incorporated into the application.
The security mechanism, modeled as security aspect, is composed with the primary model to obtain
the security-treated model. The security-treated model is analyzed to give assurance that it is resilient
to the attack.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Developing secure systems is a non-trivial task. Security stan-
dards such as the ISO Common Criteria [28] and risk management
standards such as the Australian/New Zealand Risk Management
standards [4,5] exist to aid secure systems development. How-
ever, these standards generally address system security in the
broad sense, and often require extensive resources and expertise
to adapt their use to the design of a specific system. These stan-
dards also do not address low-level details, such as, how to verify
that a system is protected from specific kinds of attacks or how to
ensure that a system has a given set of security properties. More
importantly, they do not provide a methodology for designing
secure systems.

Security mechanisms are typically analyzed in isolation as pro-
tocols, and depending on how they are integrated in an application,
they may or may not provide adequate protection. In addition,
there are often multiple mechanisms that could be used to counter
an attack, so choosing a mechanism that best fits design goals may
be confusing. It is also the case that solutions to different security
concerns may actually conflict, rendering some ineffective against
the attack they were supposed to counter. System designers need a
way to verify the efficacy of security mechanisms once they have
been integrated into an application design, prior to implementa-

tion. They also need the ability to include solutions in combination
and analyze them against various attacks. In this paper, we propose
such a methodology for designing secure applications.

We use aspect-oriented modeling (AOM) techniques [20] in our
approach to designing secure systems. Complex software is not
developed as a monolithic unit but is decomposed into modules
on the basis of functionality. We refer to the models describing
functionality as the primary model. Security concerns are not lim-
ited to one module of the primary model but impacts several of
them. For example, an attack typically affects multiple modules.
Similarly, a security mechanism that thwarts an attack will have
to be incorporated in several modules of the application. The attack
and the security mechanisms are localized in a separate model,
which we call the aspect. Modeling security mechanisms and at-
tack models as aspects has several benefits – it allows designers
to understand the attacks and the mechanisms independently,
which makes it easier to manage and change these models. Design-
ers can use techniques for composing aspects with the primary
model, followed by analysis of the resulting system, to understand
the effect of the attack or the effect of the security mechanism on
the application. Another advantage is that analyzing using differ-
ent attack models or different security aspects is easier since all
a designer must do is to re-compose the primary model with a
new attack model or new security aspect prior to performing a
new analysis.

An aspect in our work is similar to the concept of aspects used
in other AOM or AOP (Aspect-Oriented Programming) approaches
[2,13,14,31,34,57] in that they represent a non-functional concern,
e.g., security, and they are cross cutting and must be integrated at
different places in the primary model. The differences lie in how

0950-5849/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.05.004

* Corresponding author. Tel.: +1 970 491 7986; fax: +1 970 491 2466.
E-mail addresses: georg@cs.colostate.edu (G. Georg), iray@cs.colostate.edu

(I. Ray), K.Anastasakis@cs.bham.ac.uk (K. Anastasakis), B.Bordbar@cs.bham.ac.uk
(B. Bordbar), toahchoo@cs.colostate.edu (M. Toahchoodee), S.H.Houmb@ewi.
utwente.nl (S.H. Houmb).

Information and Software Technology 51 (2009) 846–864

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate / infsof

mailto:georg@cs.colostate.edu
mailto:iray@cs.colostate.edu	
mailto:K.Anastasakis@cs.bham.ac.uk
mailto:B.Bordbar@cs.bham.ac.uk
mailto:toahchoo@cs.colostate.edu
mailto:S.H.Houmb@ewi.
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

the aspects are specified, whether they are reusable, and the man-
ner in which the aspects are integrated with the application.

We define two types of aspects: generic aspects and context-spe-
cific aspects. Generic aspects are application-independent and reus-
able. For instance, an attack pattern can be represented as a generic
aspect. Similarly, a security protocol or a security mechanism can
be modeled as a generic aspect. An application developer can cre-
ate his own generic aspect or use an existing one from the library
of generic aspects. Generic aspects can be independently analyzed
to ensure that the properties of the attack or the mechanism have
been adequately captured. Generic aspects must be instantiated in
the context of a given application. The instantiation is referred to
as a context-specific aspect. We use parameterized Unified Model-
ing Language (UML) to represent generic aspects. Context-specific
aspects are represented as UML models. The instantiation occurs
by binding parameters in the generic aspect to elements in the pri-
mary model. Specifying aspects using UML allow our approach to
be used at different levels of abstraction.

To understand the impact of a security attack on the primary
model, it is necessary to compose the context-specific attack aspect
with the primary model. The composition produces the misuse
model. Analysis of the misuse model will help determine whether
the protected resources are compromised by the attack. If the re-
sults are unacceptable, a security mechanism must be integrated
with the primary model. We refer to this model as the security-
treated model. To understand the efficacy of the security mecha-
nism, the security-treated model is composed with the context-
specific attack aspect. The result is the security-treated misuse mod-
el. The security-treated misuse model is analyzed to ensure that
the given attack is mitigated in the security treated model.

Manual analysis is error-prone and tedious. Towards this end,
we investigated how this analysis can be partially automated.
The tools for verifying UML models, such as, OCLE [47] and USE
[25], are useful when we want to check if a specific model instance
conforms to the constraints of the model. Although theorem prov-
ers are effective for analyzing properties, but they require a lot of
expertise and are unlikely to be used by application developers.
We chose to use the Alloy Analyzer because it is easy to use and
has been used for verifying many real-world applications.

We illustrate the basic operation of our approach using an
example e-commerce platform called ACTIVE [17]. ACTIVE pro-
vides services for electronic purchasing of goods over the Internet.
The IST EU-project CORAS performed three risk assessments of AC-
TIVE in the period 2000–2003. The project looked into security
risks of the user authentication mechanism, secure payment mech-
anism, and the agent negotiation mechanisms of ACTIVE. Our
example consists of the user authentication mechanism of AC-
TIVE’s login service. In order to keep the example tractable, we only
show how to apply our methodology to one of its risks and one of
the possible treatments for that risk.

The paper makes several contributions. First, it provides a
methodology for designing secure applications. Second, it shows
how to analyze the impact of a security attack on an application
and how effective the security solutions are against a given attack.
Third, it allows one to compare the efficacies of the different secu-
rity solutions with respect to one or more given attacks. Fourth, it
shows how to formally analyze a model and get assurance about
the security properties. Fifth, it demonstrates feasibility that the
approach can be used for real-world applications.

The rest of the paper is organized as follows. Section 2 describes
ACTIVE. Section 3 shows an example attack to the login service. We
also show how to compose the attack model with the primary
model to create a misuse model. Section 4 presents a security
mechanism we use to prevent the attack and illustrates how we
integrate it with the primary model to create a security-treated
model. This section also shows how we generate the misuse model

for the security-treated model. Section 5 shows how we can ana-
lyze this model to ensure the satisfaction of the security properties.
Section 6 discusses related work. Section 7 concludes the paper
with some pointers to future directions. The Appendix gives the
detailed Alloy models.

2. Overview of our approach

An overview of our methodology is given in Fig. 1. Step 1 ana-
lyzes the system to identify the threats to the resources. The inputs
to this step are the primary model, possible threats, and the secu-
rity requirements. Threats become attacks on the system when
they compromise protected resources. Since an attack impacts var-
ious parts of the primary model, we abstract the specification of
the attack in an aspect. To distinguish them from the other aspects
used in our work, we refer to them as attack aspects. Step 2 involves
composing the attack aspects with the primary model to create
misuse models. Step 3 analyzes the misuse model to understand
the impact of the attack. If the results are not acceptable, potential
security solutions (or mechanisms) that counter the attack are
incorporated into the primary model to obtain the security-treated
model. The security-treated model is combined with the specific at-
tack to create a security-treated misuse model. This is done in Step 4.
The security-treated misuse model is analyzed as in Step 3, and if
the results are still unacceptable, an alternate security solution
must be integrated, and the new security-treated system misuse
model re-generated and re-analyzed. When the analysis results
are acceptable, a different attack and its potential solutions can
be considered. This is done in Step 5. It is important to continue
integrating security mechanisms and analyzing the resulting secu-
rity-treated system against previously considered attack models
since some mechanisms may interfere with each other. When such
conflicts arise, the designer can integrate alternative solutions until
a usable combination is identified through achieving acceptable
analysis results. We next discuss each step of the methodology in
more details.

2.1. Step 1: Analyze system risk

There are many different risk analyses methodologies that can
be used in the first step of the methodology, and we use the CORAS
framework [15,17,49]. CORAS is model-based, and uses UML dia-
grams and textual usage scenarios as part of a risk assessment. This
fits well with existing design processes since UML is the de-facto
modeling language used in the software industry. CORAS takes
advantage of techniques developed for the safety domain, and
has a platform of supporting tools. Using CORAS, a portion of the
system to be analyzed is identified as the context for the analysis,
and assets associated with particular stakeholders are identified
within that context. UML use case, static class, and dynamic behav-
ior diagrams are used to specify the system design that we refer to
as the primary model.

The CORAS framework use Hazard and Operability (HAZOP)
analysis to identify threats to the assets of interest, and Failure
Mode Effect Analysis (FMEA) to identify system vulnerabilities. It
then uses Fault Tree Analysis, along with the threats and vulnera-
bility analysis results to identify unwanted incidents that can lead
to attacks on assets. The consequences and frequencies of these
incidents determine the value of the risks with which they are
associated. Designers prioritize risks with respect to the system
security requirements, and assess potential treatments using these
priorities and the risk values.

This detailed assessment identifies the context in which specific
attacks could occur and the assets that could be affected. Part of
the output of a CORAS analysis is therefore the exact locations in
the system design that are vulnerable to attacks and the exact

G. Georg et al. / Information and Software Technology 51 (2009) 846–864 847

Download English Version:

https://daneshyari.com/en/article/549912

Download Persian Version:

https://daneshyari.com/article/549912

Daneshyari.com

https://daneshyari.com/en/article/549912
https://daneshyari.com/article/549912
https://daneshyari.com

