
Author's Accepted Manuscript

Use of bovine catalase and manganese dioxide for elimination of hydrogen peroxide from partly oxidized aqueous solutions of aromatic molecules – unexpected complications

Krisztina Kovács, Gyuri Sági, Erzsébet Takács, László Wojnárovits

 PII:
 S0969-806X(16)30801-5

 DOI:
 http://dx.doi.org/10.1016/j.radphyschem.2017.05.005

 Reference:
 RPC7534

To appear in: Radiation Physics and Chemistry

Received date: 21 December 2016 Revised date: 24 March 2017 Accepted date: 4 May 2017

Cite this article as: Krisztina Kovács, Gyuri Sági, Erzsébet Takács and Lászk Wojnárovits, Use of bovine catalase and manganese dioxide for elimination o hydrogen peroxide from partly oxidized aqueous solutions of aromatic molecule – unexpected complications, *Radiation Physics and Chemistry* http://dx.doi.org/10.1016/j.radphyschem.2017.05.005

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Use of bovine catalase and manganese dioxide for elimination of hydrogen peroxide from partly oxidized aqueous solutions of aromatic molecules – unexpected complications

Krisztina Kovács^{a*}, Gyuri Sági^a, Erzsébet Takács^a, László Wojnárovits^a

^aInstitute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary

*Corresponding author K. Kovács Tel/fax: +36 1 392 2548 E–mail: kovacs.krisztina@energia.mta.hu

Keywords: catalase, MnO₂, H₂O₂ removal, AOP, Cu(II)/phenanthroline test

Abstract

Being a toxic substance, hydrogen peroxide (H_2O_2) formed during application of advanced oxidation processes disturbs the biological assessment of the treated solutions. Therefore, its removal is necessary when the concentration exceeds the critical level relevant to the biological tests. In this study, H_2O_2 removal was tested using catalase enzyme or MnO_2 as catalysts and the concentration changes were measured by the Cu(II)/phenanthroline method. MnO_2 and Cu(II) ions were found to react not only with H_2O_2 but also with the partly oxidized intermediates formed in the hydroxyl radical induced degradation of aromatic antibiotic and pesticide compounds. Catalase proved to be a milder oxidant, it did not show significant effects on the composition of organic molecules. The Cu(II)/phenanthroline method gives the correct H_2O_2 concentration only in the absence of easily oxidizable compounds, e.g. certain phenol type molecules.

1. Introduction

In Advanced Oxidation Processes (AOP) used for elimination of toxic organic substances from water/wastewater, the oxidation of contaminants is usually induced by hydroxyl radical ('OH) reactions. During these reactions in aerated solutions hydrogen peroxide (H₂O₂) always forms in relatively high concentrations, e.g. in the reaction sequence: organic radical + O₂ \rightarrow peroxy radical \rightarrow O₂[•]/HO₂[•] elimination (von Sonntag, 2006). The termination reaction of the O₂[•]/HO₂[•] pair gives H₂O₂. When high energy ionizing radiation is used for water treatment Download English Version:

https://daneshyari.com/en/article/5499170

Download Persian Version:

https://daneshyari.com/article/5499170

Daneshyari.com