
Towards software process patterns: An empirical analysis
of the behavior of student teams

Éric Germain, Pierre N. Robillard *

Department of Computer and Software Engineering, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Que., Canada H3C 3A7

Received 2 May 2006; received in revised form 19 October 2007; accepted 23 October 2007
Available online 7 November 2007

Abstract

Traditional software engineering processes are composed of practices defined by roles, activities and artifacts. Software developers
have their own understanding of practices and their own ways of implementing them, which could result in variations in software devel-
opment practices. This paper presents an empirical study based on six teams of five students each, involving three different projects. Their
process practices are monitored by time slips based on the effort expended on various process-related activities. This study introduces a
new 3-pole graphical representation to represent the process patterns of effort expended on the various discipline activities. The purpose
of this study is to quantify activity patterns in the actual process, which in turn demonstrates the variability of process performance. This
empirical study provides three examples of patterns based on three empirical axes (engineering, coding and V&V). The idea behind this
research is to make developers aware that there is wide variability in the actual process, and that process assessments might be weakly
related to actual process activities. This study suggests that in-process monitoring is required to control the process activities. In-process
monitoring is likely to provide causal information between the actual process activities and the quality of the implemented components.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Software engineering process; Process patterns; Process activities; Process monitoring; Effort; Empirical study; Software engineering education;
Project control and modeling; Process measurement

1. Introduction

Implicit and explicit software engineering processes are
an integral part of any software development project. Soft-
ware processes may range from ad hoc personal practices
to an organization-wide process structure with formal
maturity assessment. There is a general consensus that
explicit software processes are likely to improve the effi-
ciency of software development activities. Their ultimate
benefit should be a better understanding of software devel-
opment processes, resulting in improved software quality
products and more realistic estimations of the budgeted
effort.

Process assessments are based on a Process Reference
Model (PRM). A PRM provides descriptions of the pro-

cess entities to be evaluated and defines what is to be mea-
sured. A major asset of the PRM is that it provides a
common terminology and scope description for process
assessment. A Process Assessment Model (PAM) supports
the conduct of an assessment [1].

A basic premise of the PAM is that the quantitative
score from the assessment is associated with the perfor-
mance of the organization or project. The predictive valid-
ity of the process capability score is that improving the
software engineering practices according to the assessment
model is expected to subsequently improve the perfor-
mance of the product quality. The rating unit in the
PAM is the process instance, which is defined as a singular
instantiation of a process that is uniquely identifiable and
about which information can be gathered in a repeatable
manner [2].

This study is not concerned with the assessment of the
process instance, but rather by the use of prescribed

0950-5849/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2007.10.018

* Corresponding author. Tel.: +1 514 340 4238; fax: +1 514 340 3240.
E-mail address: Pierre-n.robillard@polymtl.ca (P.N. Robillard).

www.elsevier.com/locate/infsof

Available online at www.sciencedirect.com

Information and Software Technology 50 (2008) 1088–1097

mailto:Pierre-n.robillard@polymtl.ca


process instances by various developers. The idea is to illus-
trate that, although the PAM has assessed the process
instance at a specific level, there may be great variability
in the use or implementation of various process instances.

Fig. 1 illustrates that a process is composed of various
process instances, which can be assessed through a PAM
with regard to some PRM, the two most popular PRMs
being ISO/IEC 15504 and CMMI. The PAM is often used
to validate a predictive model based on some quality met-
rics of the product or performance indicators of the
project.

Our work can be positioned with respect to the process-
centered environment in the following way [3]. Processes
are defined according to three levels of abstraction. The
process model definition contains characterizations of pro-
cesses expressed in a process modeling language. Process
model enactment encompasses the manual or automatic
execution of an instantiated model, and defines a variety
of means to support software process performers. Process
performance encompasses the actual tasks and activities
that are performed by the human, who may play various
roles. Process enactment and process performance have
to be coupled, in order to provide relevant and useful sup-
port for software development. In the real world, process
enactment and process performance deviate, which leads
to a definition of the actual process as encompassing the
activities that are really performed, and of the observed
process as depending entirely on the performer’s feedback
[4]. This empirical study is aimed at measuring the actual
process based on the performer’s feedback.

The success of a software process implementation
depends mostly on human understanding, acceptance and
realization of the various activities defined by the process.
We realize, by observing various software development
organizations, that sometimes the real activities performed
by the team-mates are quite different from the prescribed
process activities.

This paper presents observatory studies in which process
activities are recorded while projects are running. Analyses

of these data elements provide some insight into the vari-
ability of the process activities as performed by different
teams instructed to use the same prescribed process. The
purpose of this paper is to illustrate through these studies
the discrepancies that might occur between the reality of
software development and the software process definitions.
It stresses the need for measurements to validate that the
activities are really performed as prescribed, and presents
a new graphical representation that shows the patterns of
process activities as the project progresses.

Software processes could be monitored and controlled
in just the same way as any manufacturing or business pro-
cess. Florac and Carleton [5] state that software processes
can perform poorly, or they can be unstable, non-compli-
ant or incapable of delivering products that meet require-
ments. Unstable processes can sometimes be stabilized by
identifying the possible causes of the instability and taking
steps to eliminate those causes. Processes lacking in capa-
bility will require modification and then stabilization, since
modification alone may destabilize a process (chapter 7 of
[5]). The possibilities offered by process monitoring are dis-
cussed extensively in [6,7].

In a manufacturing environment, outlier data points on
a control chart representing some quality evolution charac-
teristics may provide indications of anomalies in process
execution. Thus, one can look for cases where data points
are outside the control ranges or expected evolution pat-
tern, and then takes appropriate action. In manufacturing
environments, control charts often monitor the quality
characteristics of artifacts, such as part dimension. Under
expected conditions, those quality characteristics will exhi-
bit similar values. In the field of software engineering (or in
any other branch of engineering where process activities
are important), effort data from various process activities
could be appropriate for monitoring process conformance
and project evolution.

The use of total effort data from a given project is of lit-
tle value in process control, since the project must be com-
pleted in order for any significant analysis to be performed,
and this defeats our purpose. So, we may want to use inter-
mediate effort data, i.e. current effort to date at any point in
time. In theory, the actual effort at a given point in time
could be compared with estimations, and the difference
between the two values measured. This would require the
use of a fixed reference point that would enable compari-
son, such as calendar time or a milestone. However, prac-
tical ways of performing such a comparison have not yet
been found. For instance, MacDonell and Shepperd [8]
have studied the effort expended in sixteen software devel-
opment projects undertaken by a single organization in
order to determine the viability of prior-phase effort analy-
sis for re-estimation in the course of a project. They found
‘‘little support for the idea of standard proportions of effort
distributed between phases.’’ Therefore, in a phase-based
approach, where effort is expended during successive
phases of a project, any comparison between projects
would likely be meaningless, save for special cases which

Project

Product
Process

PREDICTIVE
MODEL

PRM:
ISO/IEC 15504

CMMI

PAM

PE
R

FO
R

M
AN

C
E

Q
U

AL
IT

Y

Process instance

Fig. 1. Predicitive model based on process assessment.

É. Germain, P.N. Robillard / Information and Software Technology 50 (2008) 1088–1097 1089



Download English Version:

https://daneshyari.com/en/article/549922

Download Persian Version:

https://daneshyari.com/article/549922

Daneshyari.com

https://daneshyari.com/en/article/549922
https://daneshyari.com/article/549922
https://daneshyari.com

