
Deriving an approximation algorithm for automatic computation
of ripple effect measures

Sue Black *

Department of Information and Software Systems, Harrow School of Computer Science, University of Westminster,

Watford Road, Northwick Park, Harrow HA1 3TP, UK

Received 25 July 2006; received in revised form 2 July 2007; accepted 17 July 2007
Available online 31 August 2007

Abstract

The ripple effect measures impact, or how likely it is that a change to a particular module may cause problems in the rest of a program.
It can also be used as an indicator of the complexity of a particular module or program. Central to this paper is a reformulation in terms
of matrix arithmetic of the original ripple effect algorithm produced by Yau and Collofello in 1978. The main aim of the reformulation is
to clarify the component parts of the algorithm making the calculation more explicit. The reformulated algorithm has been used to imple-
ment REST (Ripple Effect and Stability Tool) which produces ripple effect measures for C programs. This paper describes the reformu-
lation of Yau and Collofello’s ripple effect algorithm focusing on the computation of matrix Zm which holds intramodule change
propagation information. The reformulation of the ripple effect algorithm is validated using fifteen programs which have been grouped
by type. Due to the approximation spurious 1s are contained within matrix Zm. It is discussed whether this has an impact on the accuracy
of the reformulated algorithm. The conclusion of this research is that the approximated algorithm is valid and as such can replace Yau
and Collofello’s original algorithm.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Software measurement; Ripple effect; Matrix algebra

1. Introduction

Measurement of ripple effect forms part of an area of
fundamental importance to software engineering, that of
impact analysis, a type of software measurement. Software
measurement as a software engineering discipline has been
around now for some thirty years [49]. Its purpose is to
provide data that can be used either for assessment of the
system in terms of complexity, good structure etc. or pre-
diction of, for example, the total cost of a system during
the software lifecycle. Typically, it is used for assessment
either during the initial development of software, or during
maintenance of software at a later date. It can help to show
how effective existing practices are and highlight where

improvements are needed [30]. A full description of soft-
ware measurement and its use is given in [20].

Most software undergoes some change during its life-
time; upgrades to software are common as are changes
made to amend or adjust the functionality of a piece of
software. For example the software used within mobile
phones is upgraded over time to make sure that customers’
expectations are met and that particular models of mobile
phones can maintain or gain competitive advantage. Soft-
ware change impact analysis [12] estimates what will be
affected in software if a change is made. This information
can then be used for planning, making and tracing the
effects of changes before the changes are implemented.
Examples of impact analysis include [12]:

• Using cross referenced listings to see what other parts of
a program contain references to a given variable or
procedure.

0950-5849/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2007.07.008

* Tel.: +44 20 7911 5000x4207.
E-mail address: sueblack@gmail.com

www.elsevier.com/locate/infsof

Available online at www.sciencedirect.com

Information and Software Technology 50 (2008) 723–736

mailto:sueblack@gmail.com


• Using program slicing [43] to determine the program
subset that can affect the value of a given variable.

• Using traceability relationships to identify software arte-
facts associated with a change.

Typically seventy percent of software development bud-
gets are spent on software maintenance [4]. Thus, measures
or tools that can speed up the rate at which changes can be
made, or facilitate better informed decisions on code
changes, can make an important contribution. All types
of maintenance involve making changes to source code or
its documentation; change impact analysis can show what
the effect of that change will be on the rest of the program
or system. Software maintenance is difficult because it is
not always clear where modifications will have to be made
to code or what the impact of any type of change to code
may have across a whole system. Change impact analysis
via the ripple effect measure has been acknowledged as
helpful during software maintenance [9] and as such has
been included as part of several software maintenance pro-
cess models. The usefulness of metrics and models in soft-
ware maintenance and evolution is described in [15].

In this introduction, ripple effect and change impact
analysis and their use during software maintenance have
been mentioned, a fuller description is given in Section 2
which describes the background to this work, particularly
the history of the ripple effect measure to date. Section 3
discusses measuring complexity and shows where ripple
effect fits in. A description of the reformulated ripple effect
algorithm is given in Section 4 with details of intramodule
and intermodule change propagation and the reformula-
tion’s component matrices. Differing versions of matrix C

which is used to factor in complexity to the measurement
of ripple effect are explained in Section 5 and a validation
of the approximated algorithm is provided in Section 6.
Section 7 is a description of the programs used in this
study. Section 8 summarizes the results of this research
and conclusions and further work are put forward in Sec-
tion 9.

2. Background and related work

The ripple effect measures impact, or how likely it is that
a change to a particular module may cause problems in the
rest of a program. It can also be used as an indicator of the
complexity of a particular module or program. Ripple
effect was one of the earliest metrics concerned with the
structure of a system and how its modules interact [39].
The first mention of the term ripple effect in software engi-
neering is by Haney in 1972 [23]. He uses a technique called
‘module connection analysis’ to estimate the total number
of changes needed to stabilise a system. Myers [34] uses
the joint probability of connection between all elements
within a system to produce a program stability measure.
A matrix is set up to store the weighting of each possible
connection within a system, then another matrix is derived
estimating the joint probability density for any two states

in the first matrix. The limit probability vector is found
using these matrices and used to calculate the stability of
the system. Soong [40] also used joint probability of con-
nection to produce a program stability measure. Haney,
Myers and Soong’s methods are all measures of probabil-
ity, the probability of a change to a variable or module
affecting another variable or module. Yau and Collofello’s
ripple effect uses ideas from this research but their ripple
effect is not a measure of probability.

2.1. Yau and Collofello’s ripple effect

When Yau and Collofello first proposed their ripple
effect analysis technique in 1978 [47] they saw it as a com-
plexity measure that could be used during software mainte-
nance (see Fig. 1) to evaluate and compare various
modifications to source code. This work was carried fur-
ther in 1980 to produce a logical stability measure that is
defined as [45, p. 547]:

‘‘a measure of the resistance to the expected impact of a

modification to the module on other modules within the

program.’’

In [45] a software maintenance process is identified (see
Fig. 1) where accounting for ripple effect is Phase 3. Other
software maintenance models that include ripple effect as
part of their lifecycle are detailed in [9]. In the 1980s the
general emphasis for software measurement extended from
source code measurement to measurement of design. The
thinking behind this was that as design measurement gives
feedback earlier in the software lifecycle, problems could be
identified and eliminated or controlled before the source
code was actually written, thus saving time and money.

Fig. 1. A methodology for software maintenance [45].

724 S. Black / Information and Software Technology 50 (2008) 723–736



Download English Version:

https://daneshyari.com/en/article/549937

Download Persian Version:

https://daneshyari.com/article/549937

Daneshyari.com

https://daneshyari.com/en/article/549937
https://daneshyari.com/article/549937
https://daneshyari.com

