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a b s t r a c t 

Understanding the evolution of cooperation among selfish individuals remains a large challenge. Network 

reciprocity has been proved to be an efficient way that can promote cooperation and has spawned many 

studies focused on network. Traditional evolutionary games on graph assumes players updating their 

strategies based on their current payoff, however, historical payoff may also play an indispensable role 

in agent’s decision making processes. Another unavoidable fact in real word is that not all players can 

know exactly their historical payoff. Based on these considerations, in this paper, we introduce historical 

payoff and use a tunable parameter u to control the agent’s fitness between her current payoff and his- 

torical payoff. When u equals to zero, it goes back to the traditional version; while positive u incorporates 

historical payoff. Besides, considering the limited knowledge of individuals, the structured population is 

divided into two types. Players of type A , whose proportion is v , calculate their fitness using historical 

and current payoff. And for players of type B , whose proportion is 1 − v , their fitness is merely deter- 

mined by their current payoff due to the limited knowledge. Besides, the proportion of these types keeps 

unchanged during the simulations. Through numerous simulations, we find that historical payoff can pro- 

mote cooperation. When the contribution of historical payoff to the fitness is larger, the facilitating effect 

becomes more striking. Moreover, the larger the proportion of players of type A , the more obvious this 

promoting effect seems. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

In realistic society, the worker will give up their reproductive 

opportunities in order to help the queen to reproduce, vampire 

bats sharing a meal of blood, fish inspecting predators in pairs [1] . 

Despite existing ubiquitous cooperative behaviors, understanding 

how and why the cooperation among selfish individuals emerges 

and sustains remains a big challenge [2] . Evolutionary game the- 

ory generates important framework into the evolution of coopera- 

tion, which attracts many works across a myriad of scientific dis- 

ciplines [3–6] . In particular, prisoner’s dilemma game (PDG), sev- 

ered as a useful paradigm, captures the essential social dilemma 

between social welfare and individual comfort [7,8] . In its original 
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form, mutual cooperation (defection) yields reward R (punishment 

P ). If one player cooperates and the other defects, the former will 

receive the sucker’s payoff S and the latter will get the temptation 

to defect T. The rank of these payoffs satisfies T > R > P > S and 

2 R > T + S , from which the selfish individuals are forced to choose 

defection, irrespective of the opponent’s choice. 

Over the past decades, a number of mechanisms or scenar- 

ios have been proposed to explain these puzzles [9–25] . Partic- 

ularly, spatial structure, which is called network reciprocity, has 

been proved to be a very efficient mechanism that can promote 

cooperation and has spawned many scholars focusing on these is- 

sues [26] . This pioneering research was firstly suggested by Nowak 

and May [27] , in which players were assigned on the vertex of 

networks and obtained their payoffs by interacting with their di- 

rect neighbors and then updated their strategies by payoff differ- 

ences. Interestingly, it proved that spatial structure played an im- 

portant role that cooperators can form compact clusters to survive. 

In line with this work, many works investigate this issue via spatial 
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Fig. 1. (a) Fraction of cooperation ρc as a function of the temptation to defect b for different values of parameter v , we fix u = 0.5. Comparing to the traditional game ( v = 0), 

we can see that when the proportion of the players of type A becomes larger, the cooperation could be extensively promoted. (b) The fraction of cooperation independence 

on the temptation to defect b when v = 0.5 and u varied. It is obvious that the parameter u can promote the evolution of cooperation when b is relatively small. However, 

when the value of b exceeds 1.03, there exists an optimal u that make cooperators thrive best (when u = 0.75). 

structure or some other factors and reached fruitful achievement, 

for example, different network topologies such as small-world net- 

work [28] , ER graph [29] , BA scale-free network [30] , multilayer 

network [31] , voluntary participation [32] , age structure [33] , so- 

cial diversity [34] , preference selection [35] , and punishment and 

reward [36–38] . Furthermore, co-evolution schemes [39,40] , time 

scales in evolutionary dynamics [41,42] , tit-for tat or win-stay-lose- 

shift strategies [42–44] have also been extensively investigated. 

In traditional evolutionary games on network, the agent’s strat- 

egy updating is determined by their current payoff [27] . However, 

historical payoff also plays an indispensable role in agent’s decision 

making processes. For example, stock holders make choices based 

on stocks’ historical information; in some companies, the decision 

makers often make choices relying on their experience. Based on 

these facts, in this paper, we integrate the agents’ historical payoff

in traditional PDG via a parameter u . In addition, considering the 

limited knowledge of individuals, we has classified the population 

into two types: Players of type A , whose proportion is v , calculating 

their fitness by historical and current payoff. While for players of 

type B , whose proportion is 1 − v , their fitness is only determined 

by their current payoff due to the limited knowledge. Besides, the 

proportions of the aforementioned two types of players are de- 

noted by v (type A ) and ( 1 − v ) (type B ) and remain unchanged 

during the simulations. The rest of this paper are organized as fol- 

lows: we first describe our modified model of PDG; subsequently, 

the main simulation results are shown in Section 3 ; lastly, we sum- 

marize our conclusions in Section 4 . 

2. Model 

Let’s first consider the interaction network. We focus on games 

in structured populations where each player occupies the nodes 

of L ∗L square lattice with periodic boundary conditions. Besides, 

each player can choose either cooperation or defection with equal 

probability which can be expressed as follows: 

S x = ( 1 , 0 ) 
T 
, S x = ( 0 , 1 ) 

T 
. (1) 

Related to the model, we choose the weak PD game, in which 

the payoffs are defined as R = 1, P = S = 0, and T = b > 1. Thus the 

payoff matrix can be expressed by matrix M. 

A = 

(
1 0 

b 0 

)
. (2) 

At each time step, player x plays the game with his nearest 

neighbors and obtains his income P x : 

p x = 

∑ 

y ∈ �x 

s T x A s y . (3) 

where �x represents the nearest neighbors of individual x . And 

the payoffs P y of neighbors of player x can be obtained in the 

same way. Based on the aforementioned phenomenon existing in 

our life, we consider the agent’s historical payoff when calculating 

player’s fitness. In detail, two types of players ( A and B ) are dis- 

tinguished and their division is performed with the probability v 

and 1- v and keep constant during the simulation. If player x be- 

longs to A type, we integrate his historical payoff into the fitness 

calculation. Namely: {
F ( x, t ) = P ( x, t ) t = 1 

F ( x, t ) = u ∗ P ( x, t ) + ( 1 − u ) ∗ P ( x, t − 1 ) t ≥ 2 

. (4) 

where u is used to control the contribution of historical payoff to 

the fitness calculation. P ( x , t ) and P ( x, t − 1 ) are the accumulated 

payoff of player x at time t and t -1, respectively. When u = 0 , tra- 

ditional game is recovered, while positive u incorporates historical 

payoff. On the contrary, given that player x belongs to type B, F x 
equals to his accumulated payoff at time t P ( x , t ), which is to say 

there is no influence of historical payoff. 

The game is iterated forward in accordance with the Monte 

Carlo (MC) simulation procedure. First, a random selected player 

x evaluates his fitness. Then he chooses at random one neighbor y , 

who also gets his fitness in the same way. Lastly, player x adopts 

the strategy from neighbor y with the probability W depending on 

the fitness differences: 

W = 

1 

1 + exp [ ( F x − f y ) /K ] 
. (5) 

where K denotes the noise or its inverse (1/ K ) represent the 

so-called intensity of selection, including irrationality and errors. 

Since the effect of noise K has been well studied in the previous 

papers [45,46] , we thus use K to be 0.1. 

During one full Monte Carlo step (MCS) each player has a 

chance to adopt one of the neighboring strategies once on aver- 

age. Results of Monte Carlo simulations presented below were ob- 

tained on 200 × 200 lattices, besides, we have also tested our re- 

sults in larger sizes of the lattice and got the same results. Key 

quantity the fraction of cooperators ρc was determined within the 



Download English Version:

https://daneshyari.com/en/article/5499455

Download Persian Version:

https://daneshyari.com/article/5499455

Daneshyari.com

https://daneshyari.com/en/article/5499455
https://daneshyari.com/article/5499455
https://daneshyari.com

