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a b s t r a c t 

This paper focuses on providing a new scheme to find the fuzzy approximate solution of fractional differ- 

ential equations (FDEs) under uncertainty. The Caputo-type derivative base on the generalized Hukuhara 

differentiability is approximated by a linearization formula to reduce the corresponding uncertain FDE to 

an ODE under fuzzy concept. This new approach may positively affect on the computational cost and eas- 

ily apply for the other types of uncertain fractional-order differential equation. The performed numerical 

simulations verify the proficiency of the presented scheme. 
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1. Introduction 

In recent two decades, fractional differential equations (FDE) 

have caught a lot of attentions due to their inherent ability, which 

can depict many physical processes with inheritance or memory 

more accurately in various fields of science and engineering [1–4] . 

Many real world problems can be better modeled by fractional- 

order differential equations (DEs) rather than by integer-order DEs 

[5,6] and nowadays, it is not hard to find very interesting and novel 

applications of FDEs. In the meantime, the non-local feature brings 

about many challenges to the existing numerical methods in terms 

of memory storage, computational cost, accuracy, etc. One of the 

big questions arsing in the numerical simulations of FDEs is that 

how we can eliminate the fractional derivative from our computa- 

tions to reduce the complexity and make a low cost and efficient 

method. Hence, there has been considerable interest in seeking nu- 

merical solutions of FDEs that describe some important physical 

and dynamic processes and are obtained with low computational 

costs [7–10] . 

Since the beginning of the fuzzy set theory in 1965, the mathe- 

matical advancements have progressed to exceptionally high qual- 

ities. Plenty of researches have been conducted on fuzzy systems 
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and its implementations in many disciplines [11–15] . However, the 

fractional calculus base upon fuzzy concept was not investigated 

till 2010. In this year, Agarwal et al. [16] as the inventors explor- 

ing this interesting field, formulated the Riemann–Liouville (RL)- 

derivative with fuzzy notion. Followed by them, some researches 

were devoted to provide the theoretical foundations of this new 

area such as the existence and uniqueness of the solution, fuzzy 

Caputo derivative, fuzzy fractional functional differential equations, 

random fuzzy fractional integral equations and etc. [17–24] . 

The lack of numerical approach for the solution of FDEs under 

uncertainty, motivated a number of authors to develop some ap- 

proximation techniques for solving this new type of FDEs [25–30] . 

From this perspective, in very recent years, demands for develop- 

ing numerical methods have been attained a considerable attention 

because of the footprint of uncertainty in FDEs-based models can 

also be tuned to improve the performance of a real-world system. 

Similar to the crisp FDEs, the major issue here is to find some pro- 

ficient numerical algorithms not only to reduce the complicated 

computations but also to have an acceptable accuracy. It is even 

more critical than non-fuzzy cases since we must solve two FDEs 

systems simultaneously in order to achieve the fuzzy approximate 

solution. This takes considerable complexity and needs more deli- 

cate studies. Thus, elegant approaches are highly desirable to find 

fuzzy approximate solutions with less effort s while the researches 

is not yet enough and satisfying. 
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Motivated by the above discussion, in this study, a novel ap- 

proach is presented to approximate the Caputo-type derivative un- 

der uncertainty. Indeed, a linearization formula is proposed to ap- 

proximate fuzzy fractional derivative under fuzzy differentiability. 

Then, the FDE under uncertainty changes to a fuzzy ODE and the 

fractional derivative is omitted from the next step of computations. 

In this step, we can apply any numerical method implemented for 

fuzzy ODE to get the approximate solution. Here, we employ fuzzy 

Laplace transforms [31] to get the desired solution under both 

types of fuzzy differentiability. Moreover, a derivative theorem that 

was already presented in [26] , is revisited to find the fuzzy exact 

solution for FDEs under uncertainty. This theorem provide a useful 

tool to obtain the exact solution via fuzzy Laplace transforms. We 

believe that this new scheme aid to establish the numerical simu- 

lations of the well-posedness of the real-world problems based on 

the uncertain FDEs. 

The organization of this paper is as follows. In Section 2 , some 

preliminary knowledge and results will be presented. This knowl- 

edge includes the definition of fuzzy numbers, fuzzy differentiabil- 

ity and fuzzy Caputo-type derivative. Then, the formulation of our 

approximation approach is proposed in Section 3 and the deriva- 

tive theorem for the fuzzy exact solution based on Laplace trans- 

forms is also presented in this section. Numerical simulation re- 

sults are reported in Section 4 to demonstrate the effectiveness of 

the given scheme arising in physical, engineering systems such as 

Basset problem. We conclude the paper in the last section. 

2. Preliminaries and notation 

First, let us present an overview of the significant properties of 

fuzzy settings and fractional calculus which are required for our 

scheme. Interested reader are referred to [3,4,11,32] and references 

there in. 

Let K(R 

d ) denote the collection of all nonempty compact and 

convex subsets of R 

d . and scalar multiplication in K(R 

d ) as usual, 

i.e., for A, B ∈ K(R 

d ) and λ ∈ R , 

A + B = { a + b | a ∈ A, b ∈ B } , λA = { λa | a ∈ A } . 
The Hausdorff distance D in K(R 

d ) is defined as follows: 

D (A, B ) = max { sup 

a ∈ A 
inf 
b∈ B 

‖ a − b‖ R d , sup 

b∈ B 
inf 
a ∈ A 

‖ a − b‖ R d } , 

where A, B ∈ K(R 

d ) , ‖ . ‖ R d denotes the Euclidean norm in R 

d . It is 

known that (K(R 

d ) , D ) is complete, separable and locally compact. 

Define F 

d = { ω : R 

d → [0 , 1] such that ω( z ) satisfies (i)–(iv) stated 

below}: 

(i) ω is normal, that is, there exists z 0 ∈ R 

d such that ω(z 0 ) = 1 ; 

(ii) ω is fuzzy convex, that is, for 0 ≤λ≤ 1, 

ω(λz 1 + (1 − λ) z 2 ) ≥ min { ω (z 1 ) , ω (z 2 ) } , 
for any z 1 , z 2 ∈ R 

d ; 

(iii) ω is upper semicontinuous; 

(iv) [ ω] 0 = cl{ z ∈ R 

d : ω(z) > 0 } is compact, where cl denotes 

the closure in (R 

d , ‖ · ‖ ) . 
The elements of F 

d are often called the fuzzy numbers. For 

α ∈ (0, 1], define [ ω] r = { z ∈ R 

d | ω(z) ≥ r} . We will call this set an 

r −cut ( r − level set) of the fuzzy set ω. For ω ∈ F 

d , one has that 

[ ω] r ∈ K(R 

d ) for every r ∈ [0, 1]. For two fuzzy sets ω 1 , ω 2 ∈ F 

d , 

we denote ω 1 ≤ω 2 if and only if [ ω 1 ] 
r ⊂ [ ω 2 ] 

r . If g : R 

d × R 

d → 

R 

d is a function then, according to Zadeh’s extension principle, 

one can extend g to F 

d × F 

d → F 

d by the formula g( ω 1 , ω 2 )(z) = 

sup 

z= g( z 1 , z 2 ) 
min { ω 1 ( z 1 ) , ω 2 ( z 2 ) } . It is well known that if g is con- 

tinuous then [ g( ω 1 , ω 2 )] r = g([ ω 1 ] 
r , [ ω 2 ] 

r ) for all ω 1 , ω 2 ∈ F 

d , r ∈ 

[0 , 1] . Especially, for addition and scalar multiplication in fuzzy set 

space F 

d , we have [ ω 1 + ω 2 ] 
r = [ ω 1 ] 

r + [ ω 2 ] 
r , [ λω 1 ] 

r = λ[ ω 1 ] 
r . In 

the case d = 1 , the r−cut set of a fuzzy number ω is a closed 

bounded interval [ ω (r ) , ω (r )] , where ω ( r ) denotes the left-hand 

endpoint of [ ω] r and ω (r) denotes the right-hand endpoint of 

[ ω] r . It should be noted that for a ≤ b ≤ c , a, b, c ∈ R , a triangular 

fuzzy number ω = (a, b, c) is given such that ω (r) = a + (b − a ) r

and ω (r) = c − (c − b) r are the endpoints of the r−cut for all r ∈ [0, 

1]. For ω ∈ F 

1 , we define the diameter of ω as diam [ ω] r = ω (r) −
ω (r) . Let us denote by 

D 0 [ ω 1 , ω 2 ] = sup 

r 
{ D ([ ω 1 ] 

r , [ ω 2 ] 
r ) : 0 ≤ r ≤ 1 } 

the distance between ω 1 and ω 2 in F 

d , where D ([ ω 1 ] 
r , [ ω 2 ] 

r ) is 

Hausdorff distance between two set [ ω 1 ] 
r , [ ω 2 ] 

r of K(R 

d ) . Then 

(F 

d , D 0 ) is a complete space. Some properties of metric D 0 are as 

follows: 

D 0 [ ω 1 + ω 3 , ω 2 + ω 3 ] = D 0 [ ω 1 , ω 2 ] , 

D 0 [ λω 1 , λω 2 ] = | λ| D 0 [ ω 1 , ω 2 ] , 

D 0 [ ω 1 , ω 2 ] ≤ D 0 [ ω 1 , ω 3 ] + D 0 [ ω 3 , ω 2 ] , 

for all ω 1 , ω 2 , ω 3 ∈ F 

d and λ ∈ R . Let ω 1 , ω 2 ∈ F 

d . If there ex- 

ists ω 3 ∈ F 

d such that ω 1 = ω 2 + ω 3 , then ω 3 is called the H- 

difference of ω 1 , ω 2 and it is denoted by ω 1 �ω 2 . Let us remark 

that ω 1 � ω 2 	 = ω 1 + (−1) ω 2 . Let us denote ˆ 0 ∈ F 

d the zero ele- 

ment of F 

d as follows: ˆ 0 (z) = 1 if z = 0 and 

ˆ 0 (z) = 0 if z 	 = 0, where 

0 is the zero element of R 

d . 

We define the space of continuous fuzzy functions as 

C F 
d 

([ t 0 , T ]) = { x : [ t 0 , T ] → F 

d | x is continuous } , 
which is a complete metric space endowed with the following 

metric 

D 

∗
0 [ x, ̂  x ] = sup 

t∈ [ t 0 ,T ] 
D 0 [ x (t) , ̂  x (t)] , for x, ̂  x ∈ C F 

d 

([ t 0 , T ]) . 

In the following part, we review some main concepts and proper- 

ties of fuzzy generalized H-differentiability for fuzzy functions, that 

was introduced in [33,34] . 

Definition 2.1 (See, [33] ) . Let x : [ t 0 , T ] → F 

d and t ∈ ( t 0 , T ). We say 

that x is generalized differentiable at t , if there exists D 

g 
H 

x (t) ∈ F 

d , 

such that either for all h > 0 sufficiently small, the generalized H- 

differences x ( t + h ) �gH x (t) , x (t) �gH x (t − h ) exist and the limits 

(by the metric D 0 ) 

lim 

h ↘ 0 
D 0 

[
x ( t + h ) �gH x (t) 

h 

, D 

g 
H 

x (t) 

]

= lim 

h ↘ 0 
D 0 

[
x ( t ) �gH x (t − h ) 

h 

, D 

g 
H 

x (t) 

]
= 0 

and a fuzzy function D 

g 
H 

x (t) ∈ F 

d is called a generalized H- 

derivative of fuzzy function x ( t ). 

Remark 2.1. If x is fuzzy generalized H-differentiable at t , then x ( t ) 

may be F H 

g1 − differentiable or F H 

g2 − differentiable. 

Lemma 2.1 ( See, [35] ) . Let x (t) ∈ F 

1 and the parametric form is as- 

sume as [ x (t)] r = [ x (t, r) , x (t, r)] for each r ∈ [0, 1]. 

(i) If x ( t ) is (FH 

g 1 )-differentiable, then x (t, r) , x (t, r) are differen- 

tiable functions and we have [ D 

g1 
H 

x (t)] r = [ x ′ (t, r) , x ′ (t, r)] . 

(ii) If x ( t ) is (FH 

g 2 )-differentiable, then x (t, r) , x (t, r) are differen- 

tiable functions and we have [ D 

g2 
H 

x (t)] r = [ x ′ (t, r) , x ′ (t, r)] . 

Lets suppose that L F 
1 

p (t 0 , T ) , 1 ≤ p ≤ ∞ stands for the set of all 

fuzzy-valued measurable functions on [ t 0 , T ] and C F 
1 
([ t 0 , T ]) is the 

space of continuous functions over [ t 0 , T ]. Hence, the fuzzy Caputo 

derivative is defined as follows: 
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