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Lie symmetry analysis and invariant subspace methods of differential equations play an important role
separately in the study of fractional partial differential equations. The former method helps to derive
point symmetries, symmetry algebra and admissible exact solution, while the later one determines ad-
missible invariant subspace as well as to derive exact solution of fractional partial differential equations.
In this article, a comparison between Lie symmetry analysis and invariant subspace methods is presented
towards deriving exact solution of the following coupled time fractional partial differential equations: (i)
system of fractional diffusion equation, (ii) system of fractional KdV type equation, (iii) system of frac-
tional Whitham-Broer-Kaup’s type equation, (iv) system of fractional Boussinesq-Burgers equation and (v)
system of fractional generalized Hirota-Satsuma KdV equation.
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1. Introduction

The subject of fractional calculus have gained considerable at-
tention and importance during the past three decades, mainly due
to its applications in numerous seemingly diverse fields of science
and engineering. Also, the investigation of fractional differential
equations(FDEs) have received much interest due to the exact de-
scription of nonlinear phenomena of many real-time problems. In
reality, a physical phenomenon may depend not only on the time
instant but also on the previous time history, and so FDEs have ob-
tained considerable popularity and importance as generalizations
of integer-order differential equations, which can be successfully
modeled by using the theory of derivatives and integral of arbitrary
order [1-6]. Considerable number of analytic techniques have been
developed to deal with nonlinear differential equations during the
past few decades. Some of the direct approaches are (i) multiple
exp-function method [7] through which three wave solutions in
(3 + 1)-dimensions could be derived [8]; (ii) Hirota bilinear tech-
nique which plays a significant role towards the construction of
soliton solutions for nonlinear partial differential equations (PDEs)
[9-11] and symbolic computations are used to generate lump solu-
tions to many nonlinear wave equations including the Kadomtsev-
Petviashvili (KP) equation [12]. However, the study of differential
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equations of fractional order has been handicapped due to the
absence of well-defined analytic techniques to deal with them.

In recent years, both mathematicians and physicists have made
many significant progress in this direction and developed some
ad hoc but effective methods such as Adomian decomposition
method [13], differential transform method [14], variational it-
eration method [15], function-expansion method of separation
variables [16] and so on to deal with FDEs. However, recent
investigations show that the Lie symmetry analysis and invariant
subspace provide effective, powerful and systematic methods to
derive exact solutions of time fractional PDEs. In the beginning
of nineteenth century, Norwegian mathematician Sophus Lie was
initially advocated the Lie symmetry analysis method and was fur-
ther developed by Ovsianikov [17] and others [18-21]. Exploiting
the Lie point symmetries one can derive group invariant solutions
for differential equations. This has been demonstrated for many
nonlinear PDEs including nonlinear Schrddinger (NLS) equation
[22]. The Lie symmetry analysis has been extended to FDEs by
Buckwar etal. [29] (see also [23-33]). The applicability of this
method to FDEs has been illustrated in [17-21].

The invariant subspace method was originally introduced by
Galaktionov and Svirshchevskii [34] for PDEs. The usefulness of the
invariant subspace method for nonlinear PDEs has been demon-
strated by many authors [35-40]. Ma [35] has shown that how one
could obtain a largest possible solutions for nonlinear PDEs from
the invariant subspace method [36] (see also [37-39]). Recently,
this method has extended by Gazizov etal. [41] for time fractional
PDEs (see also [42-47]). Here we would like to point out that
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only very few applications of coupled nonlinear system of time
fractional PDEs have been investigated through the Lie symmetry
analysis method. Also, to best of our knowledge, the invariant
subspace method has not been extended to m-component coupled
system of time fractional PDEs. The main objective of this work
is to provide a comparison between Lie point symmetry approach
and invariant subspace method towards deriving exact solution
of the following coupled time fractional PDEs namely (i) sys-
tem of fractional diffusion equation, (ii) system of fractional KdV
type equation, (iii) system of fractional Whitham-Broer-Kaup’s type
equation, (iv) system of fractional Boussinesq-Burgers equation and
(v) system of fractional generalized Hirota-Satsuma KdV equation.
The rest of article is systematized as follows: In Section2, we
begin with some basic definitions and properties of fractional
calculus and explain how to derive the Lie point symmetries
and admissible invariant subspaces for a coupled system of time
fractional PDEs with Riemann-Liouville fractional derivative. Also,
we provide the salient features of the invariant subspace method
applicable to m-component coupled system of time fractional
PDEs. In Section 3, we derive Lie point symmetries and admissible
exact solution of the above mentioned coupled system of time
fractional PDEs. In Section4, we demonstrate that the invariant
subspace helps to derive more than one exact solution of the
above mentioned coupled system of time fractional PDEs if exists.
In Section5, we give a comparison of Lie symmetry analysis and
invariant subspace methods and results of our investigation.

2. Preliminaries

In this section, we first recall some basic definitions and results
of the fractional calculus. We also present a brief details of the Lie
symmetry analysis and invariant subspace methods for coupled
system of time fractional PDEs.

Definition 2.1. The Riemann-Liouville fractional differential opera-
tor of order « > 0 of the function ¢(t) € L'[(a, b), R, ], denoted by
oD¥, is defined by [1]

oD @(t) =D" oI} ¢(t)

ﬁ%fé (t—v)r-2Dy)dv, ifn—-1<a<n neN

™ (t), ifoa=neN

(2.1)
for t>0.

If o =0, then (D¥¢(t) = ¢(t). For simplicity, we denote the
operators ¢DY and oI respectively as DY and I7.

Note 1. Leibniz formula for the Riemann-Liouville fractional
derivative of continuous functions uq(x, t) and u,(x, t) read

DY (ur (X, i (x,£)) = (‘Z)Di”m (x. DUy (x.), @ >0,
r=0
(2.2)
I(a+1)

o
where (r) = FEr -

Definition 2.2. The Erdélyi-Kober fractional differential operator
(Py“v) is given by [6,26]

m-1
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r=0
w>0 6>0 «>0, (2.3)
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is the Erdélyi-Kober fractional integral operator.

Note 2. The Laplace transformation of Riemann-Liouville fractional
derivative of the function ¢(t) of order o >0 is

n-1

L{D* ()} = s*(s) — 3 s'D* " 1(0).
r=0

n—-1l<a<n neN, NR(Gs)>0.

Definition 2.3. A two-parameter function of Mittag-Leffler type
defined by the series expansion

%) 7
Eg, (2) = gm B.v.zeC, R(B)>0, R"(y)>0.

Note 3. The Laplace transformation of the function

Bm+y—-1g(m) By i
t Eﬂyy(ibt ) is
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where E;jm; (x) = &Ep., ().

Next, we recall the convolution theorem for Laplace transfor-
mation.

Theorem 2.4. If L{y (t)} = ¥ (s) and L{¢(t)} = @(s), then

LY (9)@()} = ¥ (6) = 9(D),

where Y (t) » ¢(t) is called the convolution of ¥ (t) and ¢(t) and is
defined by the integral

Y(t) () = /0 W (t - g(rdr = /0 o(t — )Y (rdr.

2.1. Lie symmetry analysis for coupled time fractional PDEs

We present below a brief details of Lie symmetry analysis for
coupled time fractional PDEs with two independent variables.
Consider a two-coupled time fractional PDEs having the following
form

8"‘u1

o = Gy (% up g, ufV uf? ) uf)),
U, M M () k)
chz(x,ul,uz,ul st W), a0, (25)

where %(.) is a fractional time derivative in the Riemann-
Liouville sense. In the remaining part of the article, we use the
following notations:

u(]‘) _ 81uq(x, t)
a oxi
q=1,2,...,m;

Ug = uq(x, t),

J=1.2,... kg,
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