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a b s t r a c t 

Lie symmetry analysis and invariant subspace methods of differential equations play an important role 

separately in the study of fractional partial differential equations. The former method helps to derive 

point symmetries, symmetry algebra and admissible exact solution, while the later one determines ad- 

missible invariant subspace as well as to derive exact solution of fractional partial differential equations. 

In this article, a comparison between Lie symmetry analysis and invariant subspace methods is presented 

towards deriving exact solution of the following coupled time fractional partial differential equations: (i) 

system of fractional diffusion equation, (ii) system of fractional KdV type equation, (iii) system of frac- 

tional Whitham-Broer-Kaup’s type equation, (iv) system of fractional Boussinesq-Burgers equation and (v) 

system of fractional generalized Hirota-Satsuma KdV equation. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The subject of fractional calculus have gained considerable at- 

tention and importance during the past three decades, mainly due 

to its applications in numerous seemingly diverse fields of science 

and engineering. Also, the investigation of fractional differential 

equations(FDEs) have received much interest due to the exact de- 

scription of nonlinear phenomena of many real-time problems. In 

reality, a physical phenomenon may depend not only on the time 

instant but also on the previous time history, and so FDEs have ob- 

tained considerable popularity and importance as generalizations 

of integer-order differential equations, which can be successfully 

modeled by using the theory of derivatives and integral of arbitrary 

order [1–6] . Considerable number of analytic techniques have been 

developed to deal with nonlinear differential equations during the 

past few decades. Some of the direct approaches are (i) multiple 

exp-function method [7] through which three wave solutions in 

(3 + 1) -dimensions could be derived [8] ; (ii) Hirota bilinear tech- 

nique which plays a significant role towards the construction of 

soliton solutions for nonlinear partial differential equations (PDEs) 

[9–11] and symbolic computations are used to generate lump solu- 

tions to many nonlinear wave equations including the Kadomtsev- 

Petviashvili (KP) equation [12] . However, the study of differential 
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equations of fractional order has been handicapped due to the 

absence of well-defined analytic techniques to deal with them. 

In recent years, both mathematicians and physicists have made 

many significant progress in this direction and developed some 

ad hoc but effective methods such as Adomian decomposition 

method [13] , differential transform method [14] , variational it- 

eration method [15] , function-expansion method of separation 

variables [16] and so on to deal with FDEs. However, recent 

investigations show that the Lie symmetry analysis and invariant 

subspace provide effective, powerful and systematic methods to 

derive exact solutions of time fractional PDEs. In the beginning 

of nineteenth century, Norwegian mathematician Sophus Lie was 

initially advocated the Lie symmetry analysis method and was fur- 

ther developed by Ovsianikov [17] and others [18–21] . Exploiting 

the Lie point symmetries one can derive group invariant solutions 

for differential equations. This has been demonstrated for many 

nonlinear PDEs including nonlinear Schr ̈o dinger (NLS) equation 

[22] . The Lie symmetry analysis has been extended to FDEs by 

Buckwar et al. [29] (see also [23–33] ). The applicability of this 

method to FDEs has been illustrated in [17–21] . 

The invariant subspace method was originally introduced by 

Galaktionov and Svirshchevskii [34] for PDEs. The usefulness of the 

invariant subspace method for nonlinear PDEs has been demon- 

strated by many authors [35–40] . Ma [35] has shown that how one 

could obtain a largest possible solutions for nonlinear PDEs from 

the invariant subspace method [36] (see also [37–39] ). Recently, 

this method has extended by Gazizov et al. [41] for time fractional 

PDEs (see also [42–47] ). Here we would like to point out that 
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only very few applications of coupled nonlinear system of time 

fractional PDEs have been investigated through the Lie symmetry 

analysis method. Also, to best of our knowledge, the invariant 

subspace method has not been extended to m -component coupled 

system of time fractional PDEs. The main objective of this work 

is to provide a comparison between Lie point symmetry approach 

and invariant subspace method towards deriving exact solution 

of the following coupled time fractional PDEs namely (i) sys- 

tem of fractional diffusion equation, (ii) system of fractional KdV 

type equation, (iii) system of fractional Whitham-Broer-Kaup’s type 

equation, (iv) system of fractional Boussinesq-Burgers equation and 

(v) system of fractional generalized Hirota-Satsuma KdV equation. 

The rest of article is systematized as follows: In Section 2 , we 

begin with some basic definitions and properties of fractional 

calculus and explain how to derive the Lie point symmetries 

and admissible invariant subspaces for a coupled system of time 

fractional PDEs with Riemann-Liouville fractional derivative. Also, 

we provide the salient features of the invariant subspace method 

applicable to m -component coupled system of time fractional 

PDEs. In Section 3 , we derive Lie point symmetries and admissible 

exact solution of the above mentioned coupled system of time 

fractional PDEs. In Section 4 , we demonstrate that the invariant 

subspace helps to derive more than one exact solution of the 

above mentioned coupled system of time fractional PDEs if exists. 

In Section 5 , we give a comparison of Lie symmetry analysis and 

invariant subspace methods and results of our investigation. 

2. Preliminaries 

In this section, we first recall some basic definitions and results 

of the fractional calculus. We also present a brief details of the Lie 

symmetry analysis and invariant subspace methods for coupled 

system of time fractional PDEs. 

Definition 2.1. The Riemann-Liouville fractional differential opera- 

tor of order α > 0 of the function ϕ(t) ∈ L 1 [(a, b) , R + ] , denoted by 

0 D 

α
t , is defined by [1] 

0 D 

α
t ϕ(t) = D 

n 
0 I 

n −α
t ϕ(t) 

= 

{ 

1 
�(n −α) 

d n 

dt n 

∫ t 
0 (t − υ) (n −α−1) ϕ(υ) dυ, if n − 1 < α < n, n ∈ N 

ϕ 

(n ) (t) , if α = n ∈ N 

(2.1) 

for t > 0. 

If α = 0 , then 0 D 

α
t ϕ (t) = ϕ (t) . For simplicity, we denote the 

operators 0 D 

α
t and 0 I 

α
t respectively as D 

α
t and I αt . 

Note 1. Leibniz formula for the Riemann-Liouville fractional 

derivative of continuous functions u 1 ( x , t ) and u 2 ( x , t ) read 

D 

α
t ( u 1 (x, t) u 2 (x, t) ) = 

∞ ∑ 

r=0 

(
α

r 

)
D 

α−r 
t u 1 (x, t) D 

r 
t u 2 (x, t) , α > 0 , 

(2.2) 

where 
(
α
r 

)
= 

�(α+1) 
�(α−r+1)�(r+1) 

. 

Definition 2.2. The Erd ́e lyi-Kober fractional differential operator (
P 

ν,κ
δ

ψ 

)
is given by [6,26] 

(
P 

ν,κ
δ

ψ 

)
(ω) : = 

m −1 ∏ 

r=0 

(
ν + r − 1 

δ
ω 

d 

dω 

)(
K 

ν+ κ,m −κ
δ

ψ 

)
(ω) , 

ω > 0 , δ > 0 , κ > 0 , (2.3) 

m = 

{
[ κ] + 1 , if κ / ∈ N 

κ, if κ ∈ N 

, where 

(
K 

ν,κ
δ

ψ 

)
(ω) := 

{ 

1 
�(κ) 

∫ ∞ 

1 (u − 1) κ−1 u 

−(ν+ κ) ψ(ωu 

1 
δ ) du, κ > 0 , 

ψ(ω) , κ = 0 

(2.4) 

is the Erd ́e lyi-Kober fractional integral operator. 

Note 2. The Laplace transformation of Riemann-Liouville fractional 

derivative of the function ϕ( t ) of order α > 0 is 

L { D 

αϕ(t) } = s αϕ̄ (s ) −
n −1 ∑ 

r=0 

s r D 

α−r−1 ϕ(0) , 

n − 1 < α ≤ n, n ∈ N , R (s ) > 0 . 

Definition 2.3. A two-parameter function of Mittag-Leffler type 

defined by the series expansion 

E β,γ (z) = 

∞ ∑ 

r=0 

z r 

�(βr + γ ) 
, β, γ , z ∈ C , R (β) > 0 , R (γ ) > 0 . 

Note 3. The Laplace transformation of the function 

t βm + γ −1 E 

(m ) 
β,γ

(±bt β ) is 

L 

{ 

t βm + γ −1 E 

(m ) 
β,γ

(±bt β ) 
} 

= 

m ! s β−γ

(s β ∓ b) m +1 
, R (s ) > | b| 1 β , 

where E 

(m ) 
β,γ

(x ) = 

d m 

dx m 
E β,γ (x ) . 

Next, we recall the convolution theorem for Laplace transfor- 

mation. 

Theorem 2.4. If L { ψ(t) } = ψ (s ) and L { ϕ(t) } = ϕ (s ) , then 

L −1 { ψ (s ) ϕ (s ) } = ψ(t) 
 ϕ(t) , 

where ψ( t ) 
 ϕ( t ) is called the convolution of ψ( t ) and ϕ( t ) and is 

defined by the integral 

ψ(t) 
 ϕ(t) = 

∫ t 

0 

ψ(t − r ) ϕ(r ) dr = 

∫ t 

0 

ϕ(t − r ) ψ(r ) dr. 

2.1. Lie symmetry analysis for coupled time fractional PDEs 

We present below a brief details of Lie symmetry analysis for 

coupled time fractional PDEs with two independent variables. 

Consider a two-coupled time fractional PDEs having the following 

form 

∂ αu 1 

∂t α
= G 1 

(
x, u 1 , u 2 , u 

(1) 
1 

, u 

(1) 
2 

, . . . , u 

(k 1 ) 
1 

, u 

(k 2 ) 
2 

)
, 

∂ αu 2 

∂t α
= G 2 

(
x, u 1 , u 2 , u 

(1) 
1 

, u 

(1) 
2 

, . . . , u 

(k 1 ) 
1 

, u 

(k 2 ) 
2 

)
, α > 0 , (2.5) 

where ∂ α

∂t α
(. ) is a fractional time derivative in the Riemann- 

Liouville sense. In the remaining part of the article, we use the 

following notations: 

u q = u q (x, t) , u 

( j) 
q = 

∂ j u q (x, t) 

∂x j 
, 

j = 1 , 2 , . . . , k q , q = 1 , 2 , . . . , m ;
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