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a b s t r a c t 

In this study, a nonlinear investigation of a periodically driven gas bubble in glycerine is presented. 

The bifurcation structure of the bubble oscillator (Keller–Miksis equation) is explored in the pressure 

amplitude-frequency parameter plane of the excitation by means of initial (high resolution bi-parametric 

plots) and boundary value problem solvers at various ambient temperatures. The range of the applied 

temperature covers two orders of magnitude difference in the liquid viscosity which is the main damp- 

ing factor of the system. Therefore, the evolution of the harmonic and ultraharmonic resonances are pre- 

sented starting with an overdamped behaviour (there are no resonances in the parameter space) and 

ending up with a fully developed bifurcation superstructure. The results reveal a complex period bub- 

bling mechanism organized in a Farey-tree; inside each bubble a fine substructure of alternating chaotic 

and periodic bands exist. The description of the bifurcation structure presented throughout the paper can 

help to understand the mechanism of dissipation on the behaviour of nonlinear systems in more detail. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The interaction of high intensity and high frequency sound 

waves with liquid domains can lead to the phenomenon called 

acoustic cavitation, which produces bubble clusters. These are usu- 

ally composed by micron-sized gas bubbles oscillating around their 

equilibrium size. When the intensity reaches Blake’s threshold [1] , 

the bubbles become cavitationally active, and start to oscillate with 

high amplitude. During the radial oscillation of such bubbles, at 

the minimum bubble radius (collapse phase), the temperature and 

pressure in the bubble interior can exceed thousands of Kelvin and 

bar, respectively [2] . Cavitationally active bubbles always grow by 

rectified diffusion [3–6] due to the much larger diffusive area at 

the expansion phase than at the collapse phase. The limit of the 

growth is the size where the bubble lose its spherical stability 

[7,8] . Spherically unstable bubbles disintegrate into smaller bub- 

bles, which start to grow again by rectified diffusion, or dissolve 

into the liquid domain. This process is called bubble life cycle, for 

the details see [9–11] . 

The time scale of the life cycle of a bubble is greater by 

many orders of magnitude than the period of its radial oscilla- 

tion. Therefore, it is reasonable to investigate a single individual 
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bubble as a building block of clusters. The dynamics of such bub- 

bles shows highly nonlinear properties. Modern numerical tech- 

niques and methods of chaos physics revealed the existence of 

harmonic and subharmonic resonances in the pressure amplitude- 

frequency plane [12–19] , the presence of period-doubling route to 

chaos [20–25] and the alteration of chaotic and periodic windows 

[26–29] in the bifurcation pattern. The majority of these nonlinear 

features have already been proven experimentally. Subharmonics 

in the spectrum of the response of a bubble was observed first 

by Esche [30] . Later, Lauterborn and his co-workers successfully 

justified the existence of period-doubling route to chaos in water 

[31,32] . Chaotic bubble oscillation was also found by high-speed 

holographic cinematography [33] , and by measuring the time de- 

lays between flashes of emitted light (sonoluminescence [34–36] ) 

at the collapse phase of a bubble [37] . 

The aforementioned knowledge accumulated over decades in 

nonlinear bubble dynamics is usually related to water (few ex- 

ceptions are [38–41] ). Therefore, the present study intends to in- 

vestigate a gas bubble in glycerine with varying temperature (be- 

tween 20 °C and 70 °C); that is, the viscosity is varied between two 

orders of magnitude (see Table C.2 ) leading to three to one or- 

ders of magnitude higher values than of water. It is well-known 

that high viscosity causes huge damping effect [42,43] , which im- 

plies a much less feature-rich bubble dynamics. Throughout this 

paper, the evolution of the bifurcation structure in the pressure 

amplitude-frequency plane with decreasing damping factor is ex- 
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amined and compared with results obtained on other nonlinear 

oscillators such as Toda [44] , Duffing [45–47] , Morse [48] and bub- 

bles in water (see the discussion above). 

The applied bubble model is the Keller–Miksis equation, which 

is a second order ordinary nonlinear differential equation that 

takes into account the compressibility of the liquid to the first or- 

der. The numerical tools are an initial value problem solver (shoot- 

ing method implemented in CUDA C to exploit the high numer- 

ical computing power of GPUs) and a boundary value problem 

solver combined with the pseudo-arch length continuation tech- 

nique (AUTO). These advanced numerical techniques of nonlinear 

science provide a better insight into the highly damped bubble os- 

cillations than the previous studies, see e.g. [43] . 

2. Mathematical model 

The employed bubble model is the same as in our previous pa- 

per [26] , thus here, it is summarized briefly. The modified form 

[22] of the Keller–Miksis equation [49] , which describes the evolu- 

tion of the bubble radius R ( t ) in time is 

(
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where c L is the sound velocity in the liquid, ρL is the density of the 

liquid, and the dot stands for the derivative with respect to time. 

The pressure far away from the bubble 

p ∞ 

(t) = P ∞ 

+ p A sin (ωt) (2) 

consist of a static and a periodic component, where P ∞ 

is the am- 

bient pressure, p A is the pressure amplitude and ω is the angular 

frequency of the excitation. 

The pressure inside the bubble is the sum of the partial pres- 

sures of the non-condensable gas p G and vapour p V . The liquid 

pressure at the bubble wall is p L . The three kinds of pressures are 

connected by the dynamic mechanical equilibrium at the interface: 

p G + p V = p L + 

2 σ

R 

+ 4 μL 

˙ R 

R 

, (3) 

where σ is the surface tension and μL is the liquid dynamic vis- 

cosity. 

The gas content obeys a simple polytropic state of change 

p G = p G 0 

(
R 0 

R 

)3 n 

, (4) 

where R 0 and p G 0 are the reference radius and pressure, respec- 

tively. The polytropic exponent is n = 1 . 4 assuming adiabatic gas 

behaviour. 

2.1. Parameters and material properties 

During the computations, the ambient pressure P ∞ 

= 1 bar was 

constant. The ambient temperature T ∞ 

, which is one of the control 

parameter, specifies all the liquid material properties (the pressure 

dependence can be negligible), which were determined by means 

of the experiments of the Dow Chemical Company. The tabulated 

values are summarized in Appendix C . 

The bubble size is given by the equilibrium radius R E = 0 . 1 mm 

of the unexcited system ( p A = 0 ). This is a common way to pre- 

scribe the size of the bubble. Now, if the reference radius is set to 

R 0 = R E then the gas reference pressure can be expressed as 

p G 0 = 

2 σ

R E 

− ( p V − P ∞ 

) . (5) 

Fig. 1. Examples of period 1 (red), 2 (blue) and 3 (orange) attractors in the di- 

mensionless phase plane at pressure amplitudes 1.5, 3 and 3.5 bar, respectively. The 

dots denote the points of the Poincaré section. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

The two remaining parameters are related to the acoustic ir- 

radiation, namely, the pressure amplitude p A and the angular fre- 

quency ω. The angular frequency is normalized with the un- 

damped linear eigenfrequency [2] 
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of the system, which defines the relative frequency as 

ω R = 

ω 

ω E 

. (7) 

During the computations, dimensionless variables were used: 

dimensionless bubble radius x 1 = R/R E , dimensionless time τ = 

t/ ( 2 π/ω ) and dimensionless bubble wall velocity x 2 = x ′ 
1 
, where 

the ′ stands for the derivative with respect to τ . The dimension- 

less equation system is given in Appendix A.1 in detail. 

3. Numerical tools 

3.1. Initial value problem solver and Poincaré section 

Due to the strong nonlinearity of the Keller–Miksis equation, 

analytical solutions are not known to be exist, but numerical solu- 

tions can be easily obtained. The simplest method is to use an ini- 

tial value problem (IVP) solver with suitable initial conditions and 

integrate the system forward in time. After several acoustic cycles, 

the transient trajectory converges to a stable solution called attrac- 

tor. Since the bubble is periodically excited, the simplest solution 

is a closed periodic orbit. If the converged trajectory repeats itself 

after m acoustic cycles, it is called period m orbit. Fig. 1 shows dif- 

ferent periodic attractors in the dimensionless x 1 − x 2 phase plane. 

The red, blue and orange curves show period 1, 2 and 3 solutions 

calculated at pressure amplitudes 1.5, 3 and 3.5 bar, respectively. 

As one can see from Fig. 1 , the trajectories of the periodic so- 

lutions can intersect themselves and each other in the phase plane 

producing overcrowded figures. To avoid this difficulty, only some 

characteristic properties of the solutions were recorded such as the 

periodicity or the points of the Poincaré map obtained by sampling 

the continuous trajectory at the end of every acoustic period. The 

points of the Poincaré section of the periodic orbits in Fig. 1 are 

denoted by the dots. The period of the bubble oscillation may even 

tends to infinity never repeating itself. This type of solution called 

chaotic attractor. An example is given in Fig. 2 by its 10 , 0 0 0 num- 

ber of Poincaré points. 
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