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a b s t r a c t 

The spatially discrete-continuous dynamical systems, that are composed of a spatially extended medium 

coupled with a set of lumped elements, are frequently met in different fields, ranging from electronics 

to multicellular structures in living systems. Due to the natural heterogeneity of such systems, the cal- 

culation of Lyapunov exponents for them appears to be a challenging task, since the conventional tech- 

niques in this case often become unreliable and inaccurate. The paper suggests an effective approach to 

calculate Lyapunov exponents for discrete-continuous dynamical systems, which we test in stability anal- 

ysis of two representative models from different fields. Namely, we consider a mathematical model of 

a 1D transferred electron device coupled with a lumped resonant circuit, and a phenomenological neu- 

ronal model of spreading depolarization, which involves 2D diffusive medium. We demonstrate that the 

method proposed is able reliably recognize regular, chaotic and hyperchaotic dynamics in the systems 

under study. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is quite common in complexity science, when a spatially ex- 

tended media with infinitely many degrees of freedom interacts 

with a dynamical system localized in space and having a finite 

number of degrees of freedom. The mathematical models of such 

discrete-continuous systems (DCS) are composed of partial differ- 

ential equations (PDEs) coupled with ordinary differential equa- 

tions (ODEs). 

The models that fall to the class of discrete-continuous sys- 

tems arise in many applications from different research fields rang- 

ing from life sciences to information processing and electronics. 

Incomplete list of such problems includes modeling of drug de- 

livery to biological tissues [1] , neural dynamics [2] , mitochon- 

drial swelling [3] , intracellular signaling [4] , cortical spreading 

depression [5] , quantum information processing [6] , active semi- 

conductor media interacting with discrete elements [7] , lumped 

circuits coupled to a transmission line [8] , multiscale continuum 

mechanics [9] . 
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The similar class of model systems appears in the number of 

biophysical problems, where the hemodynamics, which is often 

described by Navier–Stokes PDEs, is considered together with the 

time-variable system-wide quantities, e.g., the blood pressure or 

electrocardiography (ECG) [10,11] . 

Due to the importance of the spatially discrete-continuous 

models for the different research fields, the specialized solution 

algorithms were developed (e.g. [12] ). However, there is a clear 

shortfall of the tools available for stability analysis of such dynami- 

cal systems. DCSs are often analysed with the help of methods, de- 

veloped for systems with finite number of the degrees of freedom. 

In this context the original spatially-distributed subsystem can be 

described by the set of ODEs based on lattice model [13] or Laplace 

transform method [14] . In electronics the dynamics of DCSs are 

often analysed by the consideration of the subsystems with finite 

number of the degrees of freedom and spatially-extended subsys- 

tem separately [15,16] . These approaches, obviously, have their spe- 

cific limitations. In particular, transition to the lattice model can 

potentially affects the system dynamics in an unpredictable way 

[13] , while the consideration of the dynamical regimes taking place 

in finite-dimensional subsystem may not reflect the key features of 

spatiotemporal behaviour of spatially extended subsystem [17] . 
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The most promising approach for the stability analysis of DCSs 

is based on the calculation of Lyapunov exponents (LEs). The use 

of such tool makes the significant progress in study of the finite- 

dimensional flow systems [18,19] , discrete maps [20] and time- 

series [21] (including the cases with the presence of noise, see, e.g, 

[22] ). In recent works Lyapunov exponents are applied for analy- 

sis of non Hermitian Hamiltonian systems [23] and neural systems 

[24] . In the case of spatiotemporal dynamics the calculation of LEs 

is more complicated [25,26] . At the same time, the recent results 

on Lyapunov analysis of the extended media, described within the 

framework of hydrodynamic approximation has shown a great po- 

tential of this technique for the quantitative assessment of chaotic 

behavior [26,27] , detection of hyper-chaotic regimes [28] and iden- 

tification of the synchronous modes in coupled spatially extended 

elements [28] as well as networks of interacting spatially extended 

units [29,30] . 

It should be noted, the existent methods of the LEs calcula- 

tion either for the finite-dimensional systems [31] (such as flows 

or maps) or spatially extended media [28] cannot be directly ap- 

plied to DCSs, i.e., to the systems consisting of both the spa- 

tially extended and concentrated in space subsystems. The main 

problem here is that the reference states of such systems are 

determined simultaneously by two significantly different types 

of variables, namely, by the variables depending only on time 

(which correspond to the finite dimensional subsystems) and by 

the functions which depend both on time and space coordinates 

(they represent the spatially extended subsystems). This makes im- 

possible the straightforward implementation of the normalization 

and orthogonalization procedures, developed for the finite dimen- 

sional [31] and spatially-extended [28] systems and, as the results, 

the accurate estimation of Lyapunov exponents. 

In the present paper we introduce an approach allowing to cal- 

culate the spectrum of LEs for discrete-continuous dynamical sys- 

tems. In order to illustrate the universality and capability of the 

proposed method as well as its relevance, we apply the developed 

approach to analyze the stability of dynamical regimes in two rad- 

ically different exemplary DCS that came from different research 

fields. 

First, we perform the Lyapunov stability analysis of the charge 

dynamics in a finite-dimensional dynamical circuit, where a spa- 

tially extended 1D media is included as an nonlinear element [7] . 

The latter is described by a set of the coupled Poisson and conti- 

nuity equations, whereas the circuit is described with the help of 

non-stationary Kirchhoff equations. 

Next, we consider an example from different research area. 

Namely, we analyze the dynamics of a phenomenological model 

of spreading depolarization [5] , that is composed of a set 

of FitzHugh–Nagumo (FHN) oscillators (model neurons) coupled 

through 2D diffusive media that describe the extracellular spread- 

ing of depolarizing substances. 

In both cases the Lyapunov analysis allowed us to reveal and 

quantify the transitions between the regular and chaotic dynamics 

with variation of the control parameters. 

The paper has the following structure. The approach to calcu- 

lation of the spectrum of LEs for DCS is described in Section 2 . 

The dynamics of the RLC-circuit connected with the semiconduc- 

tor transferred electron device (TED) is described and analyzed in 

Section 3 . Section 4 is devoted to the Lyapunov stability analysis of 

the model of the spreading depolarization. The final remarks and 

conclusions are given in Section 5 . 

2. Calculation of the Lyapunov exponents for spatially 

discrete-continuous systems 

Let us consider an arbitrary DCS, which is described by a set 

of coupled PDEs and ODEs. The state of the spatially extended 

medium modeled by PDEs is supposed to be defined by N vari- 

ables, each being a function of both the displacement vector r and 

time t 

�1 (r , t) , �2 (r , t) , . . . , �N−1 (r , t) , �N (r , t) , 

r ∈ R 

D , 0 ≤ t ≤ ∞ , (1) 

D is the dimension of the space (in our study D = 1 for the sys- 

tem considered in Section 3 and D = 2 for the discrete-continuous 

model of the spreading depression discussed in Section 4 ). The 

variables depending only on time 

�1 (t) , �2 (t ) , . . . , �M−1 (t ) , �M 

(t ) , 0 ≤ t ≤ ∞ . (2) 

describe the state of the subsystems with M /2 degrees of freedom 

defined by ODEs. 

In order to characterize the stability of the DSC dynamics, one 

has to trace the evolutions of the system state (in our case it 

is U (r , t) = (�1 (r , t) , . . . , �N (r , t) , �1 (t) , . . . �M 

(t)) T ) and analyse 

how a linear perturbation of this state changes with time. How- 

ever, this procedure for the case when state variables depend only 

on time [31,32] is significantly different from the case, when the 

state variables depend both on time and displacement [27,28] . In 

our situation we deal with a mix of two type of the variables men- 

tioned above, which prevents a direct application of the convention 

routines. To overcome this conceptual obstacle, we propose to con- 

sider the variables (2) as the spatially extended ones, i.e., 

�k (r , t) = �k (t) , k = 1 , M . (3) 

In this case the state of the spatially discrete-continuous system 

may be considered as 

U (r , t) = (�1 (r , t) , . . . , �N (r , t) , �1 (r , t) , . . . , �M 

(r , t)) T , (4) 

and the evolution operator 

ˆ L (U (r , t)) , (5) 

determines the spatiotemporal behavior of the system state. This 

evolution operator consists typically of coupled ordinary differen- 

tial equations and partial differential equations determining the 

evolution of localized in space subsystems and spatially extended 

media, respectively. E.g., for the RLC-TED circuit considered in 

Section 3 the evolution operator (5) consists of ODEs (19) and PDEs 

(20) –(21) with the boundary conditions (24) . Assume that r = x in 

the case of D = 1 , r = (x, y ) when D = 2 and r = (x, y, z) for D = 3 . 

The numerical algorithms for the LE calculation are usually 

based on the analysis of the perturbation V ( r , t ) of the reference 

state U ( r , t ) and the calculation of the increment/decay rate. To es- 

timate the K largest Lyapunov exponents �i , i = 1 , . . . , K, one has 

to consider a set of orthogonal perturbations V i (r , t) , i = 1 , . . . , K. 

In this case, the Lyapunov exponents characterize the exponential 

growth/decay of K orthogonal modes of U ( r , t ). Each perturbation 

V i ( r , t ) is defined as 

V i (r , t) = ( ̃  φi 
1 (r , t) , . . . , ˜ φi 

N (r , t) , ˜ ψ 

i 
1 (r , t) , . . . , ˜ ψ 

i 
M 

(r , t)) T , 

i = 1 , K (6) 

assuming that all ˜ ψ 

i 
k 
(r , t) depend only on time, i.e., 

˜ ψ 

i 
k (r , t) ≡ ˜ θ i 

k (t) , ∀ k, ∀ i. (7) 

The perturbations introduced must initially be orthogonal and nor- 

malized. The orthogonality condition reads 

(V i (r , 0) , V j (r , 0)) = 

{
1 , i = j, 
0 , i � = j. 

(8) 

where the brackets ( · , ·) denote the scalar product 



Download English Version:

https://daneshyari.com/en/article/5499478

Download Persian Version:

https://daneshyari.com/article/5499478

Daneshyari.com

https://daneshyari.com/en/article/5499478
https://daneshyari.com/article/5499478
https://daneshyari.com

