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a b s t r a c t 

A method for optimal data simulation using random evolution operator is proposed. We consider a dis- 

crete data-driven model of the evolution operator that is a superposition of deterministic function and 

stochastic forcing, both parameterized with artificial neural networks (particularly, three-layer percep- 

trons). An important property of the model is its data-adaptive state-dependent (i.e. inhomogeneous over 

phase space) stochastic part. The Bayesian framework is applied to model construction and explained in 

detail. Particularly, the Bayesian criterion of model optimality is adopted to determine both the model di- 

mension and the number of parameters (neurons) in the deterministic as well as in the stochastic parts 

on the base of statistical analysis of the data sample under consideration. On an example of data gener- 

ated by the stochastic Lorenz-63 system we investigate this criterion and show that it allows to find a 

stochastic model which adequately reproduces invariant measure and other statistical properties of the 

system. Also, we demonstrate that the state-dependent stochastic part is optimal only for large enough 

duration of the time series. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

A traditional method of modeling the observed processes gen- 

erated by a nonlinear dynamical system is the reconstruction of 

the underlying evolution operator [1,2] . The first-principle mod- 

els (FPMs), i.e. models based on axiomatic physical or other laws 

and rules of system operation, are hard to apply for modeling var- 

ious natural physical phenomena, biological, socio-economic pro- 

cesses, and so on mainly because of the extreme generality of 

these models: the complexity and spatial distribution of the sys- 

tem under consideration frequently leads to cumbersome models, 

hence, to a large scatter of qualitative prognostic estimates because 

of their strong sensitivity to subgrid parameterizations. As a result, 

the FPMs are, in the majority of cases, redundant for description of 

the dynamics of particular phenomena. Reduction of such models 

to simpler forms based on selecting variables with definite time 

scales enables qualitative description of the mechanisms underly- 

ing the studied phenomena (for instance, there exist climatic mod- 

els of intermediate complexity [3–5] , basic dynamic models of at- 

mospheric photochemistry [6,7] , conceptual models of natural phe- 

nomena [ 8 , 9 ], etc.). However, in such procedures the models often 

lose their connection to the experimentally measured time series 
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and, hence, their ability of quantitative forecasting. Alternatively 

to FPMs, empirical models are aimed at extraction of information 

about the dynamics of the system directly from the time series: 

the most statistically justified (in terms of certain empirical crite- 

rion of validity, see below) model of evolution operator is chosen, 

while the FPM equations are not brought into play. In fact, the 

empirical approach implies a model sufficient for reconstruction 

of the system’s dynamical properties manifested in the observed 

dynamics at the timescales of interest. In the past 30 years (see 

[2] and the literature therein), the empirical models, by virtue of 

their universality and independence of different physical assump- 

tions, became very popular in forecasting climate dynamics [10–

12] , financial time series [13] , investigation of living systems [14] , 

and so on. 

A typical situation in the construction of an empirical model 

is when there is no one-to-one coupling between the consecutive 

states in the space of the phase variables reconstructed from the 

time series, i.e., the problem of reconstructing an evolution op- 

erator as a single-valued function is incorrect. In the context of 

real complex systems, this circumstance is a consequence of high 

dimension of the system that has generated the time series: the 

number of dynamic variables of the model with which it is rea- 

sonable to work is limited by finite size of available data sample. 

There are a lot of special studies devoted to the problem of ap- 

propriate empirical reduction of observed high-dimensional data: 

from the standard principal component analysis [15–18] and more 
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advanced linear techniques [19–27] to nonlinear reduction meth- 

ods [28–36] . Anyway, when working with real data we have to 

construct a model in a certain low-dimensional subspace of the 

full phase space of the system, where, generally speaking, there 

is no single-valued evolution operator. In model examples, such a 

situation always occurs if interactive noise is added to the data- 

generating equations. Such an ambiguity is traditionally regarded 

to be a defect of the model and is described as a random (Gaus- 

sian) error additive to the evolution operator function. For exam- 

ple, in the works [37,38] artificial neural network (ANN) is used to 

approximate the evolution operator of the low-dimensional deter- 

ministic system assuming that the defect of the model is Gaussian 

noise with constant dispersion. 

On the other hand, the described ambiguity of the evolution 

operator is not, obviously, homogeneous over the phase space of 

the model due to the nonlinearity of the studied system. In the 

present work we use the ANN-based model modified according 

to the following idea: it is possible to take this inhomogeneity 

into consideration; namely, in the regions of phase space with 

small scatter in the dependence of the current state on the previ- 

ous state, the evolution operator may be reconstructed more accu- 

rately, thus decreasing systematic approximation bias. A more gen- 

eral structure of the model taking this inhomogeneity into account 

is proposed in [12,39] , where a random component of the model is 

supposed to depend on phase variables, i.e. to be state-dependent, 

with both the stochastic and the deterministic components being 

approximated by the ANN-based function in the form of a three- 

layer perceptron [40] . We have chosen ANN functions because they 

are known to be effective approximators of unknown dependen- 

cies (see [40] ), their efficiency in constructing prediction models 

by time series was shown in many works (e.g., [13,39,41–44] ). The 

convenience of this approximation resides on the following: firstly, 

the obtained functions are bounded, which allows avoiding wors- 

ening of the approximation accuracy at the edges of the definition 

domain. Secondly, it is possible to efficiently increase dimension 

and complexity of the model by increasing a small number of pa- 

rameters. The drawback is degeneracy of the ANN parameter space 

that may be overcome by introducing regularizing restrictions (see 

Section 2.2.3 ). 

The main question arising with such a modification of the 

model is the following: is it justified to increase the number of 

parameters by introducing an additional function into the model 

or, in other words, is the resulting model more economic in terms 

of description of the time series? To answer this question we need 

a criterion for comparing models of different complexity or, which 

is the same (without loss of generality), with different numbers of 

parameters. In this work we use a very general optimality criterion 

based on Bayesian evidence [45] . This criterion is transparently in- 

terpreted in the framework of the Bayesian paradigm: if all the 

considered models are equiprobable a priori , then the best model 

is the one reproducing the observed data with the highest proba- 

bility. From the information theory point of view, this criterion is 

equivalent to the minimum description length principle [37] , i.e. 

the best model is required to provide the most informationally- 

compressed representation of the observed data. We also devel- 

oped a numerical method for estimating the Bayesian evidence of 

the described ANN-based stochastic model, including the proce- 

dure of Bayesian regularization of ANN. 

The paper is organized in the following way. In Section 2 the 

structure of the evolution operator model is described 

( Section 2.1 ), the measure of model optimality is introduced 

( Section 2.2 ), and the method of its numerical assessment is 

presented ( Section 2.3 ). In Section 3 the proposed approach is 

used for reconstructing the stochastic Lorenz system by its scalar 

time series having different duration and generated at different 

noise level. Also, the properties of the Bayesian evidence with 

respect to the proposed stochastic model are investigated in detail 

in this section. It is shown that the stochastic model admitting a 

state-dependent random term is, generally, more preferable than 

the model with constant noise and gives a better description of 

the dynamic properties determining the observed behavior. Finally, 

the concluding remarks are formulated in Section 4 . 

2. Method of optimal stochastic model construction 

2.1. Stochastic model of evolution operator 

Let us consider discrete time series X = ( x 1 , . . . , x N ) , x n ∈ R 

D of 

characteristics x of an unknown dynamical system at N equidistant 

time moments, for which we want to construct an evolution op- 

erator model. Evolution operator, by definition, is a function acting 

in a phase space of the system. However, in a general case anal- 

ysis of the observed data does not allow us to make a conclusion 

about finiteness of the dimension of the phase space of the dy- 

namical system that has generated the time series X . Therefore, 

we have to construct a model in a certain subspace of dimension 

d , whose elements must be derived from observables X (see the 

particular realizations below) and will be denoted by u n ∈ R 

d . Ob- 

viously, in general case there is no single-valued evolution oper- 

ator Q : u n → u n +1 in such a subspace. The arising ambiguities of 

this map may be described stochastically by defining the evolution 

operator Q as a random dynamical system [46] . In practical appli- 

cations, it can be simplified (see [39] for details) to the following 

form: 

u n +1 = f ( u n ) + ̂

 g ( u n ) · ξn . (1) 

Here the mapping f : R 

d → R 

d represents the “deterministic” part 

of the model; ξn ∈ R 

d is a normal delta-correlated random process, 

with vector components being mutually independent and having 

zero mean and unity variance; the matrix function 

ˆ g : R 

d → R 

d×d 

maps model state u n to the matrix having dimension d × d and 

represents, together with ξn , the state-dependent stochastic per- 

turbation term. The model (1) proved to be efficient as applied to 

reconstructing systems of different com plexity [11,39] because the 

strong Gaussianity assumption about ξn is complemented here by 

the state-dependence (i.e. inhomogeneity over the phase space) of 

the covariance matrix. 

One of the most widely used ways to specify the phase vari- 

ables u via the data X in case of small dimension D is the Takens 

delay method and its modifications [47] , when the phase variable 

is obtained by successively shifting the time series X by an arbi- 

trary time lag. In practice, different values of the time lag lead to 

different (more or less adequate) structures of the phase space pro- 

jections and, eventually, to different results of modeling. Therefore, 

usually the lag is taken close to the time scale of interest. For ex- 

ample, for the lag equal to one time step the Takens method gives: 

u k = 

(
x k , x k −1 , . . . , x k −(l−1) 

)
, (2) 

Here l is the number of delays. Otherwise, if the dimension 

D is high, the empirical dimensionality reduction methods (see 

Section 1 ) can be applied as a preprocessing step before the de- 

laying. In this work, for notation and demonstration simplicity, 

we restrict our consideration to the case of the scalar time series 

X = (x 1 , . . . , x N ) , x n ∈ R and the reconstruction of the phase space 

by the Takens delay method with the lag equal to one time step 

(with such a restriction, any lag can be set by a proper resampling 

of the time series). Obviously, in this case the dimension d is equal 

to l . The form of the model (1) in this case will apparently be- 

come much simpler due to the presence of d − 1 trivial couplings 
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