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a b s t r a c t 

We present a mathematical model for the transmission dynamics of brucellosis that incorporates the 

effects of seasonality. We analyze the basic reproduction number associated with the time-periodic model 

and establish results on the threshold dynamics. Meanwhile, we perform an optimal control study on 

the use of animal vaccination and environmental decontamination as disease control measures against 

brucellosis infection. Our results show that seasonality plays an important role in shaping the long-term 

dynamics of brucellosis, which subsequently impacts the design of its optimal control strategies. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Brucellosis, a fatal disease of humans and animals, is caused 

by various species of the genus brucella [7] . It is one of the most 

common bacterial zoonoses worldwide and it poses a major threat 

to human and animal health, and animal production [13] . Humans 

are usually infected through consumption of non-pasteurized dairy 

products and close-contact manipulation of infected animals. In 

humans, brucellosis is life threatening and exhibits nonspecific 

symptoms, including intermittent fever, weight loss, depression, 

hepatomegaly, and splenomegaly [3,8] . Arthritis, spondylitis, os- 

teomyelitis, epididymitis, and orchitis, as well as more severe 

complications such as neurobrucellosis, liver abscesses, and en- 

docarditis, are also common in some patients [3] . In animals, 

the transmission occurs when susceptible animals are exposed 

to infected animals or through ingestion of contaminated water, 

dust, improperly treated dairy products and so on [8] . Meanwhile, 

brucellosis is primarily a reproductive disease and is associated 

with abortion, retained placenta, and impaired fertility in the 

principal animal hosts [3] . 

Although tremendous progress has been made in controlling 

the disease, there are still a number of countries/regions where 

the infection persists in domestic animals and, consequently, trans- 

mission to the human population frequently occurs. Recent reports 
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on animal infections [8] demonstrate that the disease is endemic 

in the Middle East, Asia, Africa, Latin America, the Mediterranean 

Basin, and the Caribbean. 

Recently, mathematical models have been developed to analyze 

brucellosis outbreaks in an effort to better understand the intrin- 

sic disease transmission and determine the strength and weakness 

of current prevention and control strategies. In particular, Hou and 

co-workers [5] proposed the following system of ordinary differen- 

tial equations to model the transmission dynamics of brucellosis: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ S (t) = A − β1 [ E(t) + I(t )] S(t ) − β2 B (t ) S(t ) 
−(μ + τ ) S(t) + kH(t) , 

˙ H (t) = τS(t) − γ β1 [ E(t) + I(t )] H(t ) − γβ2 H(t ) B (t ) 
−(μ + k ) H(t) , 

˙ E (t) = β1 [ S(t) + γ H(t )][ E(t ) + I(t)] 
+ β2 [ S(t) + γ H(t )] B (t ) − (σ + μ) E(t) , 

˙ I (t) = σE(t) − (μ + c) I(t) , 
˙ B (t) = β3 (E + I) − (d + δ) B, 

(1) 

where S ( t ), H ( t ), E ( t ), and I ( t ) are the numbers of the susceptible, 

vaccinated, exposed (latent), and infectious animals at time t , re- 

spectively. The total animal population at time t is N(t) = S(t) + 

H(t) + E(t) + I(t) . Further, B ( t ) is the concentration of brucella in 

the environment, the parameter A is the recruitment rate, μ is the 

natural mortality rate, c is the disease-related death rate, τ is the 

vaccination rate, k is the immunity waning rate, β1 is the direct 

disease transmission rate, β2 is the indirect disease transmission 

rate, γ is the modification factor, σ is the incubation rate, β3 is the 
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pathogen shedding rate, δ is the environmental decontamination 

rate, and d represents pathogen decay rate. As highlighted in prior 

studies [5,17] , exposed animals have no clinical manifestations and, 

without loss of generality, they can be assumed to have the same 

infectivity as that of the infectious animals. 

This work and several other studies (see, for example, [7,8] ) 

have certainly produced many useful results and improved the ex- 

isting knowledge on brucellosis dynamics. One of the limitations 

of these models, however, is that they assumed that the model pa- 

rameters are constant in time, implying that the disease contact 

rates and pathogen population growth rate, etc., all take fixed val- 

ues independent of time. In fact, like many other infectious dis- 

eases, brucellosis is significantly influence by seasonal variations, 

and prior studies have demonstrated a strong connection between 

brucellosis infection and seasonal variations [1,2,20] . Factors such 

as the seasonal availability of forage which in turn lead to no- 

madic animal farming may be attributed to seasonality of brucel- 

losis dynamics. Further, the survival of brucella in the environment 

depends critically on humidity, temperature and exposure to UV 

light. For example, its survival in ideal environments is reported 

to last up to 135 days, while a field study in the spring in Mon- 

tana, USA found that Brucella abortus survived in the environment 

for only 21–81 days [1,2,9] . In addition, an analysis of brucellosis 

datasets in countries with temperate or cold climates [20] under- 

scores that there is a marked seasonal variation in the incidence of 

acute brucellosis, with most cases occurring in the spring and sum- 

mer. Seasonal variations also lead to periodic changes in pastures 

that induce animal movement and seasonal migration, resulting in 

disease dynamics not captured by mathematical models with con- 

stant model parameters. 

From an applied perspective, understanding the mechanisms 

that link seasonal variations to diseases dynamics may aid in fore- 

casting the long-term human and animal health risks, in devel- 

oping an effective public health program, and in setting objec- 

tives for utilizing limited resources more effectively [10] . So far no 

published work has discussed the influence of seasonal variation 

on the transmission dynamics of brucellosis. The purpose of the 

present paper is to present a general brucellosis model in a peri- 

odic environment, by extending the autonomous model proposed 

in [5] to include seasonal variation in both the pathogen dynam- 

ics and the disease transmission pathways. We will then conduct a 

careful analysis on this periodic model, with a focus on its thresh- 

old dynamics characterized by the associated basic reproduction 

number. In addition, we will explore optimal disease control mea- 

sures based on animal vaccination and environmental decontami- 

nation to contain brucellosis outbreaks, through an optimal control 

study. Our results are new and, to our knowledge, very little work 

has appeared so far on the optimal control study of periodic epi- 

demiological models. 

The remainder of this paper is organized as follows. In 

Section 2 , we present details of our periodic brucellosis model, fol- 

lowed by an analysis on disease extinction and persistence that 

are determined by the basic reproduction number. In Section 3 , 

we perform an optimal control study on the use of animal vac- 

cination and environmental decontamination, through both math- 

ematical analysis and numerical simulation. Finally, we conclude 

the paper with some discussion in Section 4 . 

2. Model with seasonal variation 

2.1. Model framework 

Motivated by the model (1) , we propose the following non- 

autonomous dynamical system to describe the transmission dy- 

Fig. 1. Flowchart illustrating the dynamics of brucellosis. 

namics of brucellosis in a time-periodic environment: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ S (t) = A − β1 (t )[ E(t ) + I(t )] S(t ) − β2 (t ) B (t ) S(t ) 
−(μ + τ ) S(t) + kH(t) , 

˙ H (t) = τS(t) − γβ1 (t ) H(t )[ E(t ) + I(t)] 
−γ β2 (t) H(t) B (t) − (μ + k ) H(t) , 

˙ E (t) = β1 (t )[ S(t ) + γ H(t )][ E(t ) + I(t)] + β2 (t )[ S(t ) 
+ γ H(t)] B (t) − (σ + μ) E(t) , 

˙ I (t) = σE(t) − (μ + c) I(t) , 
˙ B (t) = β3 (t)(E + I) − d(t ) B (t ) − δB (t) . 

(2) 

All the variables and model parameters are assumed to be pos- 

itive and they retain the same definitions as in model (1) . The 

model flow diagram is depicted in Fig. 1 . 

The influence of seasonal variations on the dynamics of the dis- 

ease is captured by periodic functions β j ( t ) ( j = 1 , 2 , 3 ) and d ( t ). 

Thus, we assume that β j ( t ), ( j = 1 , 2 , 3 ) are periodic continuous 

functions in t with a period ω > 0 (specifically, ω = 12 months). 

Thus, 

β j (t) = a j 

[ 
1 + b j sin 

(
πt 

6 

)] 
, (3) 

where a j ( j = 1 , 2 , 3) is the baseline value or the times average of 

β j ( t ), and b j (0 < b j < 1) denotes the magnitude of seasonal fluctu- 

ations. In addition, we define 

d(t) = d 0 

[ 
1 + d 1 sin 

(
πt 

6 

)] 
, (4) 

where d 0 denotes the basic pathogen decay rate without seasonal 

forcing and d 1 (0 < d 1 < 1) denotes the magnitude of seasonal fluc- 

tuations. 

2.2. Basic properties of the model 

It can be easily verified that the following biologically feasible 

domain, 

	 = 

{
(S, H, E, I, B ) ∈ R 

5 
+ : S + H + E + I ≤ A 

μ
, 

B ≤ 2 a 3 (1 + b 3 ) A 

μ[ d 0 (1 + d 1 ) + δ] 

}
, (5) 

is invariant for system (2) . Thus we will study the dynamics of 

our model in the closed set 	. In addition, we note that there is a 

constant influx (at rate A ) into the susceptible class. Hence, with- 

out loss of generality, we assume that the susceptible population 

is positive at the initial time; that is, 

S(0) > 0 . (6) 

2.3. Disease-free equilibrium 

System (2) has an evident disease-free equilibrium given by 

P 0 = (S 0 , H 0 , 0 , 0 , 0) , with 

S 0 = 

A (μ + k ) 

μ(μ + τ + k ) 
, H 0 = 

Aτ

μ(μ + τ + k ) 
, and 

S 0 + γ H 0 = 

A (μ + k + γ τ ) 

μ(μ + τ + k ) 
. (7) 
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