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a b s t r a c t 

One of the questions that has recently predominated the literature is the generation and modulation of 

strange chaotic attractors, namely the ones with multi scrolls. The fractional theory might be useful in 

addressing the questions. We use the Caputo fractional derivative together with Haar wavelet numeri- 

cal scheme to investigate a three-dimensional system that generates chaotic four-wing attractors. Some 

conditions of stability at the origin (the trivial equilibrium point) are provided for the model. The error 

analysis shows that the method converges and is concluded thanks to Fubini–Tonelli theorem for non- 

negative functions and the Mean value theorem for definite integrals. Graphical simulations, performed 

for some different value of the derivative order α show existence, as expected, of chaotic dynamics char- 

acterized by orbits with four scrolls, typical to strange attractors. Hence, fractional calculus appears to be 

useful in generating and modulating chaotic multi-wing attractors. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction to the model 

Even though a huge interest for fractional differentiations and 

their properties has only resurfaced during the last two decades, 

fractional calculus remains a scientific domain as old integer order 

calculus is. Many authors have applied it in various processes 

related to real life phenomena, such as acoustic dissipation, vis- 

coelastic systems, mathematical epidemiology, continuous time 

random walk, biomedical engineering, porous media, control 

theory, Levy statistics, fractional Brownian, dielectric polarization, 

fractional signal and image processing, electrolyteelectrolyte po- 

larization, fractional filters motion and nonlocal phenomena [1–9] . 

Most of the models used in those analysis are non linear and 

require sophisticated techniques to solve them. Hence, number 

of numerical methods for the solution of fractional differential 

equations have been developed and proposed in numerous works, 

in order to provide an improved description of the phenomenon 

under investigation. Common numerical methods include finite 

difference method, variational iteration method, Crank–Nicholson 

method, adomian or homotopy analysis and lastly the one of our 

interest in this paper: wavelet method [10–18] . Wavelet analysis 

appears to be relatively new in mathematical analysis theory but 

is catching interest among scientist, especially those specialized in 
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fluid flow, applied in signal and image manipulation and numerical 

analysis, etc. 

On the other side, the scientific academy has seen, during the 

years, the development and simulation of the so called strange at- 

tractors whose unique particularity is to exhibit attractor with a 

fractal structure [19–21] . Edward Lorenz [22] is one of the first 

to propose strange attractor, Lorenz attractor. However, there are 

number of other systems of equations that generate strange at- 

tractors leading to chaotic dynamics. Few examples include the 

Rössler attractor [23] and Hénon attractor [24] , Arneodo Attrac- 

tor [25] , Lu-chen attactor [26] , etc, and lastly the one of our in- 

terest in this paper: Four-wing attactor. This paper aims to as- 

sess the effect resulted from a combination of fractional deriva- 

tive and those strange systems of equations. Whence, the whole 

analysis conducted here consists of exploring the existence of four- 

wing attractor and stability results for the model (1.3) here be- 

low, that belongs to the same family as the chaotic Rössler system 

[23,27,28] given as ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

dt 
x (t) = −y − z, 

d 

dt 
y (t) = x + ay, 

d 

dt 
z(t) = bx + z(x − c) , 

(1.1) 
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or the Lorenz system [22,27,28] ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

dt 
x (t) = σ (y − x ) , 

d 

dt 
y (t) = x (ρ − z) − y, 

d 

dt 
z(t) = xy − δz, 

(1.2) 

with α ∈ [0 ; 1] , β ∈ (0 , + ∞ ) , t > 0 where x = x (t) , y = y (t) , z = 

z(t) represent the system state and σ , ρ , δ are real constants pa- 

rameterizing the system. 

The model of our interest reads as ⎧ ⎨ ⎩ 

D 

α
t x (t) = ax + cyz, 

D 

α
t y (t) = bx + dy − xz, 

D 

α
t z(t) = ez + f xy, 

(1.3) 

where a, b, d, e ∈ R , c > 0 and f < 0 with cf � = 0. x = x (t) , y = 

y (t) , z = z(t) represent the system state and a 1 , a 2 , b 1 , c 1 are real 

constants parameterizing the system. The term D 

α
t represents a 

fractional derivative. In the next section, a comprehensive defini- 

tion of the fractional derivative we employ, namely the Caputo 

derivative and more other details with properties are provided. Our 

approach is to fully analyze the model (1.3) for any order α ∈ [0; 1]. 

More precisely, we solve the model using the numerical method of 

Haar wavelets that is described in Section 3 below. The goal is to 

refute or not the (non)existence of a chaotic four-wing attractor for 

(1.3) . Before that, let us recall the following 

Theorem 1.1. It is impossible for the system (1.3) to generate a 

chaotic four-wing attractor when α = 1 and b = 0 . 

Proof. The proof follows from [28, Theorem 1] and the fact that 

D 

1 
t u (t) ∼ du (t) 

dt 
. (1.4) 

�

Hence for α = 1 , the model (1.3) reduces to the system ⎧ ⎨ ⎩ 

x ′ (t) = ax + cyz, 

y ′ (t) = bx + dy − xz, 

z ′ (t) = ez + f xy 

(1.5) 

System (4.2) was introduced in [28,29] proved to be chaotic in the 

same level as Lorenz or Rössler equations are. Moreover, it gen- 

erates a four-wing chaotic attractor with less terms in the system 

equations compared to other models. Then, let us analyze the ex- 

tended model (1.3) and exhibit the shape of the solutions in order 

to compare with those of (4.2) . 

2. A note on derivative with non-integer order [11,27,30–33] 

In this particular domain of calculus, the most popular defini- 

tions of derivatives with non-integer order remain the Riemann–

Liouville derivative (RLFD) and Caputo derivative. The first was 

named after the work of Bernhard Riemann and Joseph Liouville 

more than a century and a half ago. Their main idea started with 

the following integral of order α

I α f (t) = 

1 

�( α) 

∫ t 

a 

f ( τ ) 

( t − τ ) 
1 −α

dτ (2.1) 

based on Euler transform when applied to analytic function and 

Cauchy’s formula for calculating iterated integrals. Hence, the RLFD 

of order α was defined for any t > 0 as 

D 

α
t f (t ) = 

d n 

dt n 
I n −α f (t ) , n − 1 < α ≤ n (2.2) 

where n ∈ N , −∞ ≤ a < t, b > a and f : (a, b) −→ R an arbitrary 

real and locally integrable function. After that, in 1967, Michele 

Caputo proposed another definition closely related to the previous 

one and given (for n = 1 ) as 

D 

α
t f (t) = I 1 −α d 

dt 
f (t) , 0 < α ≤ 1 (2.3) 

where the unknowns are the same as in (2.2) , except the function 

f that is from the first order Sobolev space 

H 

1 (a, b) = 

{
f : f, 

d 

dt 
f ∈ L 2 (a, b) 

}
. (2.4) 

Recently, more investigations conducted by Caputo and Fabrizio 

[31] pointed out another definition, the Caputo–Fabrizio fractional 

derivative given by 

c f D 

α
t f (t) = 

M(α) 

( 1 − α) 

∫ t 

0 

˙ f ( τ ) exp 

(
−α( t − τ ) 

1 − α

)
dτ, (2.5) 

where M ( α) is a normalization function such that M(0) = M(1) = 

1 . Soon after that Losada and Nieto [32] improved this definition 

as 

c f D 

α
t f (t) = 

(2 − α) M(α) 

2 ( 1 − α) 

∫ t 

0 

˙ f ( τ ) exp 

(
−α( t − τ ) 

1 − α

)
dτ. (2.6) 

and defined a more suitable fractional integral that reads as: 

c f I αt f (t) = 

2(1 − α) 

( 2 − α) M(α) 
f ( t) + 

2 α

( 2 − α) M( α) 

∫ t 

0 

f ( τ ) dτ, (2.7) 

α ∈ [0, 1] t ≥ 0. This anti-derivative represents sort of average be- 

tween the function f and its integral of order one. In the same mo- 

mentum, Goufo and Atangana [4,11] propose the New Riemann–

Liouville fractional order derivative given for α ∈ [0, 1] by 

a D 

α
t f (t) = 

M(α) 

1 − α

d 

dt 

∫ t 

a 

f ( τ ) exp 

(
− α

1 − α
( t − τ ) 

)
dτ (2.8) 

Again, the NRLFD is without any singularity at t = τ in compar- 

ison to the classical Riemann–Liouville fractional order derivative 

(2.2) and also it verifies 

lim 

α→ 1 
a D 

α
t f (t) = 

˙ f ( t ) (2.9) 

and 

lim 

α→ 0 
a D 

α
t f (t) = f ( t ) . (2.10) 

In order to address the issue of locality that exists in the above 

definitions of fractional derivatives, nonlocal definitions were pro- 

posed and generalized [27,33] as follows: Let f be a function 

in H 

1 (a ; b) ; b > a ; α ∈ [0 ; 1] , β ∈ (0 ,+ ∞ ) then, the Caputo-sense 

one-parameter and nonlocal fractional derivative of order α is 

given by: 

ab D 

α
t f (t) = 

M(α) 

( 1 − α) 

∫ t 

a 

˙ f ( τ ) E α

[
−α( t − τ ) α

1 − α

]
dτ = 

abc 
a D 

α
t f ( t) . 

(2.11) 

where M ( α) is the same normalization function defined in 

(2.5) and E α the one-parameter Mittag–Leffler function. 

The Caputo-sense two-parameter and nonlocal fractional 

derivative of order α knowing β as a parameter is given by: 

gc D 

α,β
t f (t)= 

βW (α, β) 

( β−α) 

∫ t 

a 

˙ f ( τ ) (t −τ ) β−1 E α,β

[
−αβ(t −τ ) α

β−α

]
dτ, 

(2.12) 

where W ( α, β) is a two-variable normalization function such that 

W (0 , 1) = W (1 , 1) = 1 , and and E α, β the two-parameter Mittag- 

Leffler function. 
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