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a b s t r a c t 

Presented is an electronic implementation of a matched filter intended for chaos-based communication 

systems. While implementing the transmitter side of such systems is relatively trivial, the receiver has 

proven challenging to develop. Most chaotic systems lack a known fixed basis function, making it difficult 

to develop a matched filter for them. Instead, their receivers rely on more complicated or less effective 

techniques to compensate for the presence of noise. However, a previously developed manifold piecewise 

linear chaotic system has been shown to have an exact analytic solution. This solution has enabled the 

development of a matched filter for use in any communication system based on this chaotic system. The 

original communication system operated at a fundamental frequency of 84 Hz, much too low for any 

practical applications. Therefore, newer communication systems have been designed to operate at higher 

frequencies. In this work, the performance of this matched filter has been evaluated with a 18.4 kHz 

chaotic oscillator. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Currently, chaos electronics have been used in a number of ap- 

plications, including random number generation [1] , noise gener- 

ation [2] , radar [3] , device characterization [4] , robotics [5] , and 

communications [6–10] . Chaos-based communication systems have 

received particular interest because of the advantages chaotic sys- 

tems can provide for improving security and performance. These 

advantages are the result of the unique properties inherent to 

chaotic systems. 

In general, chaotic systems are deterministic; however, their 

aperiodic long-term behavior and sensitivity to initial conditions 

makes it difficult to predict their behavior for more than a short 

period of time [11] . Furthermore, chaotic waveforms possess a con- 

tinuous power spectral density from DC up to the fundamental fre- 

quency of oscillation. Due to these properties, chaotic waveforms 

give the appearance of noise when observed over a prolonged pe- 

riod of time. As a result, it can be difficult for anyone other than 

the intended recipient to detect a signal from a chaos-based com- 

munication system [12–14] . 

Futhermore, while the behavior of chaotic systems is complex, 

many such systems are relatively simple to implement in electron- 
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ics [6] . As a result, chaos-based communication systems can be 

much simpler than communication systems relying on other tech- 

niques for improving security. Another advantage is that the wide 

bandwidth of chaotic waveforms improves the signal’s robustness 

against disturbances impacting a narrow frequency range, such as 

filtering from multipath propagation and inference from periodic 

signals [10] . 

Implementing a chaos-based commincation system can be chal- 

lenging. While it is relatively simple to develop a transmitter, it is 

difficult to develop a receiver that can detect the chaotic waveform 

in the presence of additive white Gaussian noise (AWGN) [15] . In a 

conventional communication system, a matched filter is the opti- 

mal method for detecting a signal in the presence of AWGN. How- 

ever, the basis function of the waveform needs to be known in or- 

der to implement the matched filter. Most chaotic systems do not 

have a known analytic solution, meaning that a matched filter can- 

not be readily developed for them [16] . 

Unlike most chaotic systems, an analytic solution has been de- 

rived for the manifold piecewise linear chaotic system originally 

described by Saito and Fujita [17] . Later work showed that this sys- 

tem can be characterized as a linear convolution of a sequence of 

binary symbols and a fixed basis function [16] . From these find- 

ings, Corron et al. developed a chaotic oscillator and matched filter 

based on this chaotic system [18,19] . However, their oscillator op- 

erated at a fundamental frequency of 84 Hz, severely limiting its 

range of applications. 
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Fig. 1. An example of the chaotic system’s output, x ( t ) (in blue) and the nonlinear 

forcing function, s ( t ), (in red). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

To enlarge the range of potential applications, the fundamen- 

tal frequency of the chaotic oscillator needed to be increased by 

several orders of magnitude. This goal led to the development of 

the chaotic oscillators designed by Beal and co-workers [20,21] . 

These oscillator designs have fundamental frequencies ranging 

from 18.4 kHz to 1.7 MHz, making them much more practical. 

However, before the new chaotic oscillators could be used in a 

communication system, a new matched filter needed to be devel- 

oped to operate at the same fundamental frequency as the new 

oscillators. Presented is a hardware implementation of this new 

matched filter. Its performance with a 18.4 kHz chaotic oscillator 

has been evaluated by both simulation and hardware testing. 

2. Background: The chaotic system 

2.1. Saito’s manifold piecewise linear chaotic system 

As stated above, both the original and new chaotic oscillators 

are based on the manifold piecewise linear chaotic system origi- 

nally defined by Saito and Fujita. The advantage of this system is 

that an exact analytic solution has been developed. This system is 

a synthesis of a linear second-order continuous time differential 

equation with a nonlinear discrete forcing function [17] . The con- 

tinuous components of the system are represented by the second- 

order linear differential equation defined in (1) . 

ẍ (t) − 2 β ˙ x (t) + (ω 

2 + β2 ) x (t) = (ω 

2 + β2 ) s (t) . (1) 

In the equation, x ( t ) is the system’s ouput, ω is the fundamen- 

tal radial frequency, and β is equivalent to a positive Lyapunov ex- 

ponent [16] . In order for the system to remain in chaotic motion, 

0 < β ≤ ln (2). In (1) , s ( t ) is the nonlinear forcing function repre- 

sented by the piecewise function in (2) . 

s (t) = 

{ +1 x (t) ≥ 0 

−1 x (t) < 0 

(2) 

The continuous portion of the chaotic system has an unstable 

response due to the positive Lyapanov exponent. The oscillation is 

centered on the instantaneous equilibrium point defined by s ( t ). 

The magnitude of the oscillation increases until the output satis- 

fies the guard condition. The guard condition occurs when there is 

an instantaneous zero crossing of the oscillation and the derivative 

of the oscillation. Afterwards, the value of s ( t ) switches, as defined 

in (2) , and the oscillation continues around the new value of s ( t ). 

Fig. 1 shows an example of the system’s output, x ( t ), and s ( t ). The 

output of the chaotic oscillator can be controlled using arbitrarily 

small perturbations to stablize periodic orbits [22,23] . This process 

can be used to encode information into the chaotic waveform be- 

fore it is transmitted. The encoded information, or symbolic con- 

tent, is represented by the forcing function, s ( t ) [6,24] . Since s ( t ) is 

part of the oscillator’s feedback path, controlling s ( t ) influences the 

following x ( t ), shown in ( 3 ). 

Fig. 2. The basis function for the chaotic system when β = ln (2) . 

Fig. 3. Generalized schematic of the chaotic oscillator. 

2.2. Basis function 

The analytic solution of the chaotic system can be written as a 

linear convolution of the symbolic content and a fixed basis func- 

tion by solving (1) for x ( t ), as shown in (3) . 

x (t) = 

∞ ∑ 

m = −∞ 

s m 

P (t − m ) (3) 

In (3) , P ( t ) is the basis function and s m 

represents the symbolic 

content of the system. The symbolic content modulates the basis 

function centered at time, t = m [19] . The equation for the basis 

function, P ( t ), is represented in (4) . As an example, the plot of the 

basis function’s waveform when β = ln (2) is shown in Fig. 2 . 

P (t) = 

{(1 − e −β ) e βt (cos (ωt) + sin (ωt)) [ t] < 0 

1 − e −β(t−1) (cos (ωt) + sin (ωt)) 0 ≤ [ t] < 1 

0 [ t] ≥ 1 

(4) 

2.3. Overview of the chaotic oscillator circuit 

The schematic of the chaotic oscillator is shown in Fig. 3 . This 

circuit was developed by B. K. Rhea et. al. based on the manifold 

piecewise linear system described above [25] . It is comprised of a 

LC resonant circuit, a common base amplifier, and a feedback net- 

work. As shown in Fig. 3 , x ( t ) is generated by the resonant circuit, 

while s ( t ) is generated by the feedback network. When in opera- 

tion, the common base amplifier functions effectively as a negative 

resistance to the circuit. The output of the resonant circuit is sam- 

pled by the feedback network to generate s(t), which is in turn fed 

back into the resonant circuit. As labeled in the figure, the output 

of the oscillator, x ( t ), is generated by the resonant circuit. After- 

wards, s ( t ) is fed into the resonant circuit in order to generate x ( t ). 

The fundamental frequency of the oscillator is set by the values of 

C and L in Fig. 3 and can be calculated using (5) . For the 18.4 kHz 

oscillator, C = 1 μF and L = 150 μH. 

f = 

1 

2 π
√ 

2 C ∗ L 
(5) 



Download English Version:

https://daneshyari.com/en/article/5499496

Download Persian Version:

https://daneshyari.com/article/5499496

Daneshyari.com

https://daneshyari.com/en/article/5499496
https://daneshyari.com/article/5499496
https://daneshyari.com

