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a b s t r a c t 

The quantum white noise ( QWN ) Gaussian kernel operators (with operators parameters) acting on nu- 

clear algebra of white noise operators is introduced by means of QWN - symbol calculus. The quantum- 

classical correspondence is studied. An integral representation in terms of the QWN - derivatives and their 

adjoints is obtained. Under some conditions on the operators parameters, we show that the composition 

of the QWN -Gaussian kernel operators is a QWN -Gaussian kernel operator with other parameters. Finally, 

we characterize the QWN -Gaussian kernel operators using important connection with the QWN - derivatives 

and their adjoints. 
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1. Introduction 

Guassian operators are important in the representation theory 

of infinite dimensional groups. Such operators appear in analysis 

and mathematical physics. As important examples of Gaussian op- 

erators, namely: the Fourier transform, the Poisson formula and 

the Mehler formula. Gaussian operator is by definition [13] an in- 

tegral operator of the form 

B f (x ) = 

∫ 
y ∈ R n 

χ(x, y ) f (y ) , 

where χ ( x, y ) is a Gaussian distribution on R 

m × R 

n and f is a func- 

tion on R 

n . It is obvious that B is a well defined operator from 

S(R 

n ) into S ′ (R 

n ) . Following Neretin (see [13] ) the Gaussian op- 

erators in spaces of functions of infinite numbers of variables are 

more important in probability and mathematical physics than fi- 

nite dimension Gaussian operators. Trying to overcome this dif- 

ficulty in extending the finite dimensional Gaussian operators to 

those in infinite dimensions, Luo and Yan (see [12] ) studied such 

operators on infinite dimensional white noise functional spaces. 

The white noise analysis has been developed to an infinite dimen- 

sional distribution theory on Gaussian space ( E ∗, μ) as an infinite 

dimensional analogue of Schwartz distribution theory on Euclidean 

space R with Lebesgue measure: 

E := S(R ) ⊂ H := L 2 (R , dx ) ⊂ S ′ (R ) =: E ∗. (1) 
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Our mathematical framework of white noise analysis is the 

Gel’fand triple of test function space F θ (E ∗
C 
) and generalized func- 

tion space F 

∗
θ
(E ∗

C 
) : 

F θ (E ∗
C 
) ⊂ L 2 (E ∗, μ) ⊂ F 

∗
θ (E ∗

C 
) . (2) 

There is a formal analogy between white noise calculus and the 

calculus on Euclidean space based on this Gel’fand triple, e.g., ro- 

tation groups [7] , Laplacians [6] . 

In white noise analysis, the set { x (t) ; t ∈ R } is taken as a coor- 

dinate system of ( E ∗, μ) and { a t , a ∗t ; t ∈ R } (annihilation and cre- 

ation) is the coordinate system for white noise differential oper- 

ators as homologue of the Euclidean differential basis { ∂ 
∂x k 

; 1 ≤
k ≤ d} . It is a fundamental fact that every white noise operator 

� ∈ L (F θ (E ∗
C 
) , F 

∗
θ
(E ∗

C 
)) admits a Fock expansion as an infinite se- 

ries: 

� = 

∞ ∑ 

l,m =0 

�l,m 

(κl,m 

) , (3) 

where the integral kernel operator �l, m 

( κ l, m 

) is given by 

�l,m 

(κl,m 

) = 

∫ 
R l+ m 

κl,m 

(s 1 , · · · , s l , t 1 , · · · , t m 

) a ∗s 1 · · · a ∗s l a t 1 

· · · a t m d s 1 · · · d s l d t 1 · · · d t m 

. (4) 

The white noise operator � can be regarded as a “function” of the 

variables { a s , a ∗t ; s, t ∈ R } . This intuitive idea allows to introduce 

the so-called quantum white noise derivatives (see Ref. [9] ) 

D 

+ 
t � = 

∂�

∂a t 
≡ [ a t , �] , D 

−
t � = 

∂�

∂a ∗t 
≡ −[ a ∗t , �] 
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acting on a suitable subset of the nuclear algebra 

L (F θ (E ∗
C 
) , F 

∗
θ
(E ∗

C 
)) . The set { 

D 

+ 
s , D 

−
t , (D 

+ 
u ) 

∗, (D 

−
v ) 

∗; s, t, u, v ∈ R 

} 

will be taken as a quantum white noise coordinate system. 

Based on an adequate definition of a QWN - symbol and an in- 

finite dimension nuclear spaces, the main purpose of this paper is 

to introduce and characterize the Gaussian operators (which will 

called QWN -Gaussian kernel operators) acting on white noise op- 

erators using the quantum white noise coordinate system. Many 

important operators, such as the quantum second quantization, 

the quantum Fourier–Mehler transform (see [2,3,8] ), etc. are QWN - 
Gaussian kernel operators. 

The paper is organized as follows. In Section 2 , we summa- 

rize the common notations, concepts and basic topological iso- 

morphisms used throughout the paper. In Section 3 , we introduce 

the QWN -Gaussian kernel operator. Then, we study the quantum- 

classical correspondance and we give important integral represen- 

tation of QWN -Gaussian kernel operator. In Section 4 , we show that 

the composition of the QWN -Gaussian kernel operators is a QWN - 
Gaussian kernel operator with others parameters. In Section 5 , we 

characterize the QWN -Gaussian kernel operators using a connection 

with QWN- derivatives and their adjoints. 

2. Backgrounds 

In this section we summarize the common notations and con- 

cepts used throughout the paper which can be found in Refs. [1–

5,11,14–19] . 

2.1. Basic Gel’fand triples 

Let H be the real Hilbert space L 2 (R ) of square integrable func- 

tions on R with norm | · | 0 . The Gel’fand triple (1) can be recon- 

structed in a standard way (see Ref. [14] ) by the harmonic oscilla- 

tor A = 1 + t 2 − d 2 /dt 2 and H . The eigenvalues of A are 2 n + 2 , n = 

0 , 1 , 2 , · · · , the corresponding eigenfunctions { e n ; n ≥ 0} form an or- 

thonormal basis for L 2 (R ) . In fact ( e n ) are the Hermite functions 

and therefore each e n is an element of E . The space E is a nuclear 

space equipped with the Hilbertian norms 

| ξ | p = | A 

p ξ | 0 , ξ ∈ E, p ∈ R 

and we have 

E = proj lim 

p→∞ 

E p , E ∗ = ind lim 

p→∞ 

E −p , 

where, for p ≥ 0, E p is the completion of E with respect to the norm 

| · | p and E −p is the topological dual space of E p . We denote by N = 

E + iE and N p = E p + iE p , p ∈ Z , the complexifications of E and E p , 

respectively. 

Throughout the paper, we fix a Young function θ satisfies the 

following condition 

lim sup 

x →∞ 

θ (x ) 

x 2 
< ∞ . (5) 

The polar function θ ∗ of θ , defined by θ ∗(x ) = sup t≥0 (tx − θ (t)) , 

x ≥ 0, is also a Young function. For more details, see Refs. [5] and 

[15] . For a complex Banach space ( B , ‖ · ‖ ), let H(B ) denotes the 

space of all entire functions on B . For each m > 0 we denote by 

Exp( B, θ , m ) to be 

Exp (B, θ, m ) = 

{ 

f ∈ H(B ) ; ‖ f‖ θ,m 

:= sup 

z∈ B 
| f (z) | e −θ (m ‖ z‖ ) < ∞ 

} 

. 

The space F θ (E ∗
C 
) is defined by 

F θ (E ∗
C 
) = proj lim 

p→∞;m ↓ 0 Exp (E C , −p , θ, m ) . (6) 

In the remainder of this paper we simply use F θ for F θ (E ∗
C 
) . It is 

noteworthy that, for each ξ ∈ E C , the exponential function e ξ (z) := 

e 〈 z,ξ 〉 , z ∈ E ∗
C 
, belongs to F θ and the set of such test functions 

spans a dense subspace of F θ . The space of linear continuous op- 

erators from F θ into its topological dual space F 

∗
θ

is denoted by 

L (F θ , F 

∗
θ
) and assumed to carry the bounded convergence topol- 

ogy. Let μ be the standard Gaussian measure on E ∗ uniquely spec- 

ified by its characteristic function 

e −
1 
2 | ξ | 2 0 = 

∫ 
E ∗

e i 〈 x,ξ 〉 μ(dx ) , ξ ∈ E. 

Under condition (5) , we have the nuclear Gel’fand triple (2) , see 

Ref. [5] . 

2.2. QWN -derivatives 

For z ∈ E ∗
C 

and ϕ( x ) with Taylor expansion 

∑ ∞ 

n =0 〈 x �n , f n 〉 in F θ , 

the holomorphic derivative of ϕ at x ∈ E ∗
C 

in the direction z is de- 

fined by (a (z) ϕ)(x ) := lim λ→ 0 
ϕ (x + λz) −ϕ (x ) 

λ
. We can check that the 

limit always exists, a (z) ∈ L (F θ , F θ ) and a ∗(z) ∈ L (F 

∗
θ
, F 

∗
θ
) , where 

a ∗( z ) is the adjoint of a ( z ). For ζ ∈ E C , a ( ζ ) extends to a continuous 

linear operator from F 

∗
θ

into itself (denoted by the same symbol) 

and a ∗( ζ ) (restricted to F θ ) is a continuous linear operator from 

F θ into itself. If z = δt ∈ E ∗
C 

we simply write a t instead of a ( δt ). In 

QWN -field theory a t and a ∗t are called the annihilation and creation 

operators at the point t ∈ R . 

The symbol and the Wick symbol, denoted by σ and ω respec- 

tively, of � ∈ L (F θ , F 

∗
θ
) are by definition [14] the C -valued func- 

tion on E C × E C obtained as 

σ (�)(ξ , η) = 〈〈 �e ξ , e η〉〉 , 
ω(�)(ξ , η) = 〈〈 �e ξ , e η〉〉 e −〈 ξ ,η〉 , ξ , η ∈ E C , (7) 

respectively, where 〈〈 · , · 〉〉 denotes the duality between the two 

spaces F 

∗
θ

and F θ . 

It is a fundamental fact in quantum white noise theory [14] (see 

also Ref. [10] ) that every white noise operator � ∈ L (F θ , F 

∗
θ
) ad- 

mits a unique Fock expansion (3) where, for each pairing l, m ≥ 0, 

κl,m 

∈ ( E C 
�(l+ m ) ) ∗

sym (l,m ) 
and �l, m 

( κ l, m 

) is the integral kernel op- 

erator characterized via the Wick symbol transform by 

ω(�l,m 

(κl,m 

))(ξ , η) = 〈 κl,m 

, η�l 
� ξ�m 〉 , ξ , η ∈ E C . (8) 

This can be formally rewritten as (4) . For ζ ∈ E C , the quantum 

white noise derivatives are defined by 

D 

+ 
ζ
� = [ a (ζ ) , �] , D 

−
ζ
� = −[ a ∗(ζ ) , �] . (9) 

These are called the creation derivative and annihilation deriva- 

tive of �, respectively. For z ∈ E ∗
C 
, D 

+ 
z is a continuous operator 

from L (F θ , F θ ) into itself and D 

−
z is a continuous operator from 

L (F 

∗
θ
, F 

∗
θ
) into itself. The pointwisely quantum white noise deriva- 

tives D 

±
t ≡ D 

±
δt 

are discussed in Ref. [9] . 

2.3. Basic topological isomorphisms 

For p ∈ E C and γ 1 , γ 2 > 0, we define the Hilbert spaces 

F θ,γ1 ,γ2 
(E C ,p � E C ,p ) = 

{ −→ ϕ = (ϕ l,m 

) ∞ 

l,m =0 ; ϕ l,m 

∈ 

× (E �l 
C ,p � E �m 

C ,p ) sym (l,m ) , ‖ 

−→ ϕ ‖ 

2 
θ,p, (γ1 ,γ2 ) 

< ∞ 

} 

, 

where 

‖ 

−→ ϕ ‖ 

2 
θ,p, (γ1 ,γ2 ) 

:= 

∞ ∑ 

l,m =0 

(θl θm 

) −2 γ −l 
1 γ −m 

2 | ϕ l,m 

| 2 p 

and θn = inf r> 0 e 
θ (r) /r n , > n ∈ E C . Put F θ (E C � E C ) = ⋂ 

p∈ E C ,γ1 ,γ2 > 0 
F θ,γ1 ,γ2 

(E C ,p � E C ,p ) . Let H θ (E C � E C ) = 
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