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a b s t r a c t 

The stochastic sensitivity function (SSF) method is extended to estimate the stationary probability distri- 

bution around periodic attractors of nonautonomous nonlinear dynamical systems subjected to Poisson 

white noise in this paper. After deriving the stochastic sensitivity functions of period- N cycle of map- 

ping systems based on the characteristic of Poisson process, non-autonomous dynamical systems around 

periodic attractors are converted to mapping systems by constructing a stroboscopic map, and then the 

stochastic sensitivity functions of periodic attractors of nonautonomous nonlinear systems can be ob- 

tained by adopting the results of mapping systems. It is found that the stochastic sensitivity functions 

depend on the product of noise intensity and the arrival rate of Poisson processes. To illustrate the valid- 

ity of the proposed method, a Henon map driven by Poisson processes and a Mathieu–Duffing oscillator 

under Poisson white noise are studied. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Random disturbance and nonlinearity widely exist in real sys- 

tems [1–5] . The interplay between random disturbance and nonlin- 

earity in dynamical systems can give rise to different kinds of phe- 

nomena like noise-induced enhancement [6] , noise-induced syn- 

chronization [7] , noise-induced transitions [8–10] , noise-induced 

chaos [11,12] , noise-induced intermittency [13,14] , noise-enhanced 

stability [15] , stochastic resonance [16,17] and anomalous diffusion 

[18] . 

A class of random excitations is modeled as Gaussian white 

noise (GWN). However, it is inappropriate to use Gaussian white 

noise to represent the random excitations which are characterized 

by impulsive loading, such as wind buffeting of airplane tail [19] , 

wave action on a ship [20] , moving loads traveling on a bridge [21] , 

earthquakes shake on structures [22] . These kinds of random exci- 

tations are often modeled as Poisson white noise (PWN) [23] . 

The probability density function (PDF) of the response of non- 

linear dynamical systems subjected to white noise is governed by 

the Fokker–Planck–Kolmogorov (FPK) equation [24] . However, in 

general, the FPK equation is very hard to solve directly. Therefore, 

many approximate and numerical approaches are proposed, such 

as equivalent linearization [25,26] , stochastic averaging method 

[27,28] , exponential-polynomial closure method [29,30] , path inte- 

∗ Corresponding author. 

E-mail address: hongling@mail.xjtu.edu.cn (L. Hong). 

gral method [31,32] , finite element method [33,34] , Monte Carlo 

simulation [35,36] , etc. 

For nonlinear dynamical systems subjected to GWN, the 

stochastic sensitivity function (SSF) method has been put for- 

ward based on the quasipotential theory and used for the prob- 

abilistic description of the stochastic attractor [37] . Since the SSF 

can be utilized to construct confidence domains which reflect 

the main features of spatial arrangement of random states under 

small noise, it has been applied to study the phenomena which is 

caused by the noise acting on nonlinear dynamical systems, such 

as stochastic bifurcations [38] , noise-induced transitions [39] and 

noise-induced chaos [40] . 

Though the SSF technique has been widely used to analyze 

the response of nonlinear dynamical systems under GWN [41,42] , 

to the best of our knowledge, it has not been employed to the 

response analysis of nonlinear systems under PWN. To describe 

the statistical characteristics of the stochastic attractor of nonau- 

tonomous nonlinear dynamical systems driven by PWN, the SSF 

method is first extended to the discrete nonlinear systems under 

PWN in this paper. Then, utilizing stroboscopic sections, periodic 

attractors of nonautonomous nonlinear dynamical systems are dis- 

cretized into period- N cycles of the corresponding nonlinear map- 

ping systems. On the basis of the results of mapping systems, the 

SSF of nonautonomous nonlinear dynamical systems can be de- 

rived. Furthermore, the dependence of the SSF on the noise inten- 

sity and the arrival rate of PWN is obtained. 

This paper is organized as follows. In Section 2 , the algorithms 

to derive the SSFs of periodic attractors of a nonautonomous non- 
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linear dynamical system and a nonlinear mapping system are 

given. In Sections 3 and 4 , the Henon mapping and the Mathieu–

Duffing oscillator under PWN are studied to illustrate the method 

proposed in Section 2 . Finally, conclusions are shown in Section 5 . 

2. Stochastic sensitivity function of periodic attractors of 

nonlinear systems driven by Poisson white noise 

Consider a stochastic system 

˙ X = f (X , t) + σ (t ) ξ (t ) (1) 

where X is an n -dimensional state vector, f ( X , t ) is a smooth 

n -dimensional vector-valued function on X and time t , 

σ (t) = { σ1 (t) , σ2 (t) , . . . , σm 

(t) } is an n × m matrix-valued func- 

tion, and ξ (t) = { ξ1 (t ) , ξ2 (t ) , . . . , ξm 

(t ) } T is an m -dimensional 

uncorrelated Poisson white noise which is referred to as the 

formal derivative of the compound Poisson process 

C (t) = { C 1 (t) , . . . , C m 

(t) } 

= 

{ 

N 1 (t) ∑ 

i =1 

Y 1 i U 1 (t − t i ) , . . . , 

N m (t) ∑ 

i =1 

Y mi U m 

(t − t i ) 

} 

. 

Here, for each j ∈ { 1 , 2 , . . . , m } , N j ( t ) is a Poisson counting pro- 

cess with rate λj , U j (t − t i ) is the unit step function at t i , and Y ji 
is a random variable which stands for the intensity of the i th im- 

pulse for the j th Poisson counting process N j ( t ). Assume that the 

sequence of random variables { Y ji , i = 1 , 2 , . . . } is independent and 

identically distributed. Then, 

E[ dC ] = { λ1 E [ Y 11 ] dt, . . . , λm 

E [ Y m 1 ] dt} , 

V ar[ dC ] = 

⎛ 

⎝ 

λ1 E[ Y 2 11 ] dt 0 

. . . 

0 λm 

E[ Y 2 m 1 ] dt 

⎞ 

⎠ , 

If Y ji = 1 , then the compound Poisson process C j ( t ) is reduced 

to the Poisson counting process N j ( t ) and 

E[ dC ] = { λ1 d t, . . . , λm 

d t} 

V ar[ dC ] = 

⎛ 

⎝ 

λ1 dt 0 

. . . 

0 λm 

dt 

⎞ 

⎠ , 

Consider the corresponding deterministic system 

˙ X = f (X , t) . (2) 

Assume that the system (2) has a periodic attractor with period 

T and ϕt ( X ) is the flow generated by vector field f ( X , t ). Then for 

a state X 0 on the periodic attractor corresponding to time t 0 , we 

have ϕ T ( X 0 ) = X 0 . Therefore, a stroboscopic map 

X k +1 = ϕ �t ( X k ) (3) 

where �t is the sampling interval and k is a positive integer, is 

used to convert a continuous-time periodic trajectory X ( t ) into a 

discrete-time periodic trajectory { X k }. The stroboscopic sections are 

defined as 

�k = { (X , t) ∈ R 

m × R | t = t 0 + k �t } . (4) 

When �t = T /N , where N is a positive integer, the peri- 

odic attractor of system (1) is discretized into a period- N cy- 

cle { X 1 , X 2 , . . . , X N } by N stroboscopic sections { �1 , �2 , . . . , �N } . 
In this case, the map is called 1/ N -periodic stroboscopic map. 

The fourth order Runge–Kutta method is adopted in this paper 

to estimate the 1/ N -periodic stroboscopic map (3) from t k to 

t k +1 . That is to say, ϕ �t ( X k ) = X k + ( F 1 ,k + 2 F 2 ,k + 2 F 3 ,k + F 4 ,k )�t / 6 

where F i,k (i = 1 , 2 , 3 , 4) stand for the integral coefficients of the 

k th iteration in the fourth order Runge–Kutta algorithm. 

According to above results, the 1/ N -periodic stroboscopic map 

of stochastic system (1) is approximated by the following expres- 

sion 

X̄ k +1 = ϕ �t ( ̄X k ) + σk �C k (6) 

where X̄ k is the state of the stochastic system, σk stands for σ( t k ), 

and �C k = C ( t k +1 ) − C ( t k ) . 

SSF of the periodic attractors of stochastic system ( 1 ) is de- 

rived below from the 1/ N -periodic stroboscopic map (6) and the 

stochastic sensitivity analysis method of discrete systems. 

Let Z k = X̄ k − X k denote small deviations of states X̄ k of stochas- 

tic system (6) from points X k of the deterministic period- N cycle. 

Then the first approximation of stochastic system (6) at X k on the 

stroboscopic section �k is given by the following equation 

Z k +1 = A k Z k + σk �C k (7) 

where A k = ∂ ϕ �t ( X , t k ) / ∂X | 
X = X k 

and A k + N = A k . That is, A k is an 

N -periodic matrix. 

The first moment m k = E[ Z k ] and the second central moment 

V k = E[ Z k Z 

T 
k 

] − E[ Z k ] E[ Z 

T 
k 

] for the solution Z k of the system (7) sat- 

isfy the following equations 

m k +1 = A k m k + D k (8) 

V k = A k V k A 

T 
k + Q k (9) 

where D k = σk E[�C k ] and Q k = σk V ar[�C k ] σ
T 
k 

. Assume that σk is 

an N -periodic matrix, then D k and Q k are also N -periodic matrices. 

Thus, the N consecutive iterations of systems (8) and (9) are 

m lN+2 = A 1 m lN+1 + D 1 

m lN+3 = A 2 m lN+2 + D 2 

. . . 

m lN + N +1 = A N m lN+ N + D N (10) 

V lN+2 = A 1 V lN+1 A 

T 
1 + Q 1 

V lN+3 = A 2 V lN+2 A 

T 
2 + Q 2 

. . . 

V lN + N +1 = A N V lN+ N A 

T 
N + Q N (11) 

where l is a positive integer. It is suggested that the expressions 

connecting m (l+1) N+1 with m lN+1 and V (l+1) N+1 with V lN+1 are 

m (l+1) N+1 = B m lN+1 + D (12) 

V (l+1) N+1 = B V lN+1 B 

T + Q (13) 

where B = A N · · · A 2 A 1 , D = D N + A N D N−1 + . . . + A N · · · A 2 D 1 , and 

Q = Q N + A N Q N−1 A 

T 
N 

+ . . . + A N · · · A 2 Q 1 A 

T 
2 

· · · A 

T 
N 

. 

According to Ref. [43] , if the inequality ρ( B ) < 1 holds, where 

ρ( B ) is the spectral radius of matrix B , then the deterministic 

period- N cycle is exponentially stable. Therefore, the following the- 

orem holds. 

Theorem 1. Assume ρ( B ) < 1. Then 

a) The N -periodic solution g k : g k + N = g k of the system (8) is 

unique, where g 1 is a unique solution of the following equation 

g = Bg + D (14) 

and g 2 , g 3 , . . . , g m 

are obtained by 

g k +1 = A k g k + D k , k = 1 , 2 , . . . , N − 1 . (15) 
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