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a b s t r a c t 

Two conservative differences schemes for the nonlinear dispersive Benjamin–Bona–Mahony–KdV (BBM- 

KdV) equation are proposed. The first scheme is two-level and nonlinear-implicit. The second scheme 

is three-level and linear implicit. Existence of its difference solutions has been shown. It is proved by 

the discrete energy method that the two schemes are uniquely solvable, unconditionally stable and the 

convergence is of second-order in the maximum norm. An iterative algorithm is proposed for solving the 

nonlinear scheme. The particular case known as the RLW equation is also discussed numerically in detail. 

Furthermore, three invariants of motion are evaluated to determine the conservation properties of the 

problem. Interaction of solitary waves with different amplitudes are shown. The three invariants of the 

motion are evaluated to determine the conservation proprieties of the system. The temporal evaluation 

of a Maxwellian initial pulse is then studied. Some numerical examples are given in order to validate the 

theoretical results. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Benjamin–Bona–Mahony (BBM) equation is also called the 

regularized long wave (RLW) equation 

u t − u xxt + u x + uu x = 0 , (1.1) 

and its counterpart, the Korteweg-de Vries (KdV) equation 

u t + u xxx + u x + uu x = 0 , (1.2) 

have both been proposed as models for long waves in nonlinear 

dispersive systems [1,2] . Both equations have a family of stable 

solitary-wave solutions of permanent form. Because the analytical 

solution of the BBM equation is not very useful, the availability of 

accurate and efficient numerical methods is essential. Numerical 

solutions of the BBM equation have been undertaken by employ- 

ing various form of the finite difference methods [3–7] , finite ele- 

ment methods [8–11] , homotopy perturbation method [12,13] , He’s 

variational iteration method [14] , the first integral method for the 

modified RLW equation [15] , and other numerical techniques (see 

[16–22] and references therein). 

In this work, we establish two conservative difference schemes 

for a model of nonlinear dispersive equations typified by the BBM–

KdV equation and prove that the schemes are unconditionally sta- 
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ble and convergent with the convergence of O (h 2 + k 2 ) in the dis- 

crete L ∞ -norm. Therefore, we shall approximate numerically, by a 

periodic code, solutions of the initial-value problem that decay to 

zero as | x | → ∞ . Such solutions include the solitary waves of BBM–

KdV equation on the real line and by products of their interactions. 

Hence, by taking the interval [0, L ] large enough in each numerical 

experiment, so that the solution remains sufficiently small at the 

endpoints, we can approximate in a satisfactory manner the gen- 

eration and interaction of real line solitary waves for finite time 

intervals. 

We consider the initial-value and L -periodic boundary-value 

problems for the BBM–KdV equation; thus we seek a real-valued 

function u ( x , t ), L -periodic in x , that satisfies 

u t − u xxt + αu xxx + u x + βuu x = 0 , (x, t) ∈ � × [0 , T ] , (1.3) 

u (x, 0) = u 0 (x ) , x ∈ �̄, (1.4) 

where u 0 is a L -given periodic real function, � = [0 , L ] , 0 < T < ∞ , 

α and β are given real constants. 

It is easy to verify that problem (1.3) –(1.4) satisfies the follow- 

ing conservative laws: 

Q(t) = 

∫ L 

0 

u (x, t) dx = 

∫ L 

0 

u 0 (x ) dx = Q(0) . (1.5) 

E(t) = || u (·, t) || 2 L 2 + || u x (·, t) || 2 L 2 = || u 0 || 2 L 2 + || (u 0 ) x || 2 L 2 = E(0) . 
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(1.6) 

The remainder of the article is arranged as follows: In Section 2 , a 

nonlinear conservative difference scheme is derived. Conservation 

of discrete mass and discrete energy are discussed, a priori esti- 

mates for numerical solutions, existence, uniqueness and conver- 

gence for the difference scheme are proved. In Section 3 an itera- 

tive algorithm for the difference solution is given and its conver- 

gence is also proved. In Section 4 , the linear scheme is presented 

and its priori estimates and L ∞ -convergence are shown. In the last 

section, some numerical experiments are presented to support our 

theoretical results. 

Throughout this article, C denotes a generic positive constant 

which is independent of the discretization parameters h and k , but 

may have different values at different places. 

2. A nonlinear conservative difference scheme 

In this section, we propose a two-level nonlinear Crank–

Nicolson type finite difference scheme for the problem (1.3) –(1.4) . 

For convenience, the following notations are used. For a positive 

integer N , let time-step k = 

T 
N , t n = nk, n = 0 , 1 , . . . , N. Let space- 

step h = 

L 
J , x j = jh, j = 0 , . . . , J, and let 

R 

J 
per = { V = (V j ) j∈ Z / V j ∈ R and V j+ J = V j , j ∈ Z } . 

For a function V n ∈ R 

J 
per , define the difference operators as: 

(V 

n 
j ) x = 

V 

n 
j+1 

− V 

n 
j 

h 

, (V 

n 
j ) x̄ = 

V 

n 
j 

− V 

n 
j−1 

h 

, (V 

n 
j ) ˆ x = 

V 

n 
j+1 

− V 

n 
j−1 

2 h 

, 

(V 

n 
j ) t = 

V 

n +1 
j 

− V 

n 
j 

k 
, (V 

n 
j ) t̄ = 

V 

n +1 
j 

− V 

n −1 
j 

2 k 
, 

V 

n + 1 2 

j 
= 

V 

n +1 
j 

+ V 

n 
j 

2 

, V̄ j 

n = 

V 

n +1 
j 

+ V 

n −1 
j 

2 

. 

For any function V n , W 

n ∈ R 

J 
per , we introduce the discrete L 2 inner 

product in R 

J 
per 

〈 V 

n , W 

n 〉 = h 

J ∑ 

j=1 

V 

n 
j W 

n 
j , 

and Sobolev norms (or seminorms) 

|| V 

n || = 

√ √ √ √ h 

J ∑ 

j=1 

V 

2 
j 

, || V 

n 
x || = 

√ √ √ √ h 

J ∑ 

j=1 

(V 

n 
j 
) 2 x , 

|| V 

n 
ˆ x || = 

√ √ √ √ h 

J ∑ 

j=1 

(V 

n 
j 
) 2 

ˆ x 
, || V 

n || ∞ 

= max 
1 ≤ j≤J 

| V 

n 
j | . 

Denote as H 

m 

per (�) the periodic Sobolev space of order m . 

We discretize the problem (1.3) –(1.4) by the following Crank–

Nicolson type difference scheme. We approximate u n 
j 
∈ R 

J 
per , u 

n 
j 

:= 

u (x j , t 
n ) , by U 

n 
j 

∈ R 

J 
per . 

(U 

n 
j ) t − (U 

n 
j ) x ̄x t + α

(
U 

n + 1 2 

j 

)
x ̄x ̂ x 

+ 

(
U 

n + 1 2 

j 

)
ˆ x 
+ ϕ 

(
U 

n + 1 2 

j 
, U 

n + 1 2 

j 

)
= 0 

j = 1 , . . . , J, n = 0 , . . . , N − 1 , (2.1) 

U 

n 
j = U 

n 
j+ J , j = 1 , . . . , J, n = 0 , . . . , N, (2.2) 

U 

0 
j = u 0 (x j ) , j = 1 , . . . , J, (2.3) 

where 

ϕ 

(
U 

n + 1 
2 

j 
, U 

n + 1 
2 

j 

)
= 

β

3 

((
U 

n + 1 
2 

j 

)(
U 

n + 1 
2 

j 

)
ˆ x 
+ 

[ (
U 

n + 1 
2 

j 

)2 ] 
ˆ x 

)
. 

Next, we need the following lemma, which is a consequence 

of the well-known formulas of summations by parts and related 

periodicity conditions. 

Lemma 1. For any grid functions V, W ∈ R 

J 
per we have 

〈 V x , W 〉 = −〈 V, W x̄ 〉 , (2.4) 

〈 V ˆ x , W 〉 = −〈 V, W ˆ x 〉 , (2.5) 

〈 V x ̄x , V 〉 = −|| V x || 2 , (2.6) 

〈 V ˆ x , V 〉 = 0 , (2.7) 

〈 V x ̄x ̂ x , V 〉 = 0 , (2.8) 

〈 ϕ(V, V ) , V 〉 = 0 . (2.9) 

Lemma 2. For any discrete function V ∈ R 

J 
per , we have 

|| V ˆ x || 2 ≤ || V x || 2 . (2.10) 

Proof. For V ∈ R 

J 
per , we have 

|| V x || 2 = || V x̄ || 2 . (2.11) 

By Cauchy Schwartz inequality, we obtain for V ∈ R 

J 
per 

|| V ˆ x || 2 = h 

J ∑ 

j=1 

(
V j+1 − V j−1 

2 h 

)2 

= h 

J ∑ 

j=1 

(
V j+1 − V j 

2 h 

+ 

V j − V j−1 

2 h 

)2 

≤ 2 h 

J ∑ 

j=1 

(
V j+1 − V j 

2 h 

)2 

+ 2 h 

J ∑ 

j=1 

(
V j − V j−1 

2 h 

)2 

= 

1 

2 

|| V x || 2 + 

1 

2 

|| V x̄ || 2 . 
Therefore, the inequality (2.10) can be easily proved from 

(2.11) . �

Lemma 3. For any two mesh functions X, Y ∈ R 

J 
per , if || X || ∞ 

is 

bounded then there exists a positive constant C such that: ∣∣∣ < ϕ(X, X ) − ϕ(Y, Y ) , X − Y > 

∣∣∣ ≤ C 

(
|| X − Y || 2 + || X − Y || 2 x 

)
. 

Proof. Set Z = X − Y, we have X 2 − Y 2 = (X − Y )(X + Y ) = 2 XZ −
Z 2 . 

Noting 

< (X 

2 ) ˆ x − (Y 2 ) ˆ x , Z > = 2 < (X Z) ˆ x , Z > − < (Z 2 ) ˆ x , Z >, 

and 

< X (X ) ˆ x − Y (Y ) ˆ x , Z > = − < Z (Z ) ˆ x , Z > + < Z(X ) ˆ x , Z > 

+ < X (Z) ˆ x , Z > . 

Consequently 

< ϕ(X, X ) − ϕ(Y, Y ) , Z > = − < ϕ(Z, Z) , Z > −β

3 

< X (Z) ˆ x , 

Z > + 

β

3 

< Z(X ) ˆ x , Z > . (2.12) 

Since || X || ∞ 

is bounded, then there exists constant C such that 

− < X (Z) ˆ x , Z > ≤ C|| Z ˆ x || . || Z|| . (2.13) 
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