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a b s t r a c t 

In this article, the author studies the dynamics of Visceral Leishmaniasis disease to analyze the seasonal 

VL incidence data from South Sudan during the period January, 2011 to December, 2011. The seasonality 

is consolidated in the model as sandfly growing rate, which is presumed to be time periodic. The basic 

reproduction number ( R 0 ) has been derived and estimated. On the premise of statistical and epidemiolog- 

ical information of South Sudan, parameters in the model are estimated. The author discusses an optimal 

control strategy among the two preventive measures namely use of vaccination and possible treatment 

of infective humans. Numerical findings indicate that the mass treatment is not sufficient to control the 

outbreak of VL in the population, additional control programs (such as vaccination) with treatment are 

required to control the VL disease outbreak. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Leishmaniasis is world’s second largest vector borne disease 

parasitic to humans and is caused specifically by protozoan par- 

asites belonging to the Leishmania genus. Visceral leishmania- 

sis (VL), the post-kala-azar dermal leishmaniasis (PKDL), cuta- 

neous leishmaniasis (CL) and cutaneous leishmaniasis with in- 

volvement of lesions of the mucous membranes, which is also 

called mucocutaneous leishmaniasis (MCL) are four different clin- 

ical demonstration of the disease. Visceral leishmaniasis (VL) or 

“kala-azar”, is responsible for 20,0 0 0–40,0 0 0 deaths worldwide 

[40] with 20 0,0 0 0–40 0,0 0 0 new cases in every year [40] . Ac- 

cording to WHO, in Bangladesh, India, Nepal, Sudan, Ethiopia and 

Brazil most of the cases of VL have been reported [54] . Fever, 

weight loss, splenomegaly, and anaemia are few clinical symp- 

toms of kala-azar (KA). VL is a systemic infection of the phago- 

cytic and reticulo-endothelial system; this infection includes the 

lymph nodes, spleen and liver. In addition, some VL treated pa- 

tients (6 months to several years after the treatment regimen) 

show a macular, maculopapular, and nodular rash that contain dor- 

mant parasites [3,10,54] . These individuals are themselves recov- 

ered, but serve as an active source of new infection when exposed 

to vectors. Such individuals are referred to as post-kala-azar der- 

mal leishmaniasis (PKDL) infected. 

Visceral leishmaniasis (VL) has been focused by the WHO for 

elimination as it is lethal, if left untreated. It demands an effi- 
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cient implementation of disease intervention strategies that can 

limit the spread of the infection among human populations. Recent 

studies on VL intervention strategies can be broadly classified un- 

der three groups; studies relating to-animal reservoir control, vec- 

tor population control and human reservoir control [43] . The is- 

sues of implementation of strategies, and the associated problems 

with each of these strategies, further emphasizes the requirement 

of novel intervention strategies or the use of effective combina- 

tions of the existing strategies to target the elimination of the dis- 

ease. All these require the advancement of an effective and cost- 

effective VL vaccine [53] . Since vaccination can be used as an im- 

portant strategy to control the occurrence and prevalence of VL, 

we need to consider vaccination as a control strategy in the math- 

ematical modeling of VL to reduce the growth of the disease. 

Recently, researchers explored rich dynamics such as bi- 

stability, limit cycle oscillations, period doubling oscillations & 

chaos [5,6,8,20,21,30,32,33] . On the other hand, diffusive models 

explored Turing instability and/or pattern formation in mathemat- 

ical biology. Recently, some researchers investigated the Turing in- 

stability, the phenomena of pattern formation in the ecological and 

epidemiological system [44–46] . Different types of mathematical 

models (ODE, PDE, DDE, SDE, etc.) are developed to investigate dif- 

ferent biological processes (like, species interactions, disease, dis- 

persal, pattern formation, environmental fluctuations, etc.). Here, 

we particularly interested to observe the dynamics of VL disease 

transmission and further contribute in decision-making processes 

regarding intervention mechanisms using mathematical models, 

which consider as an important tool to capture the real scenario 

[47,48,55] . The inter-epidemic periods between 1875 and 1950 in 
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Assam, India was studied by Dye [17] using a deterministic model 

to describe the dynamics of VL. This model was extended in Malta 

[15] to explain the efficacy of various control methods [16] . After 

this pioneering work, many mathematical models have been stud- 

ied to analyze the VL transmission dynamics [2,9,13,14,18,29,40–42] 

but only few articles describe the VL transmission [2,18,29,40–42] . 

Transmission of VL can affect animals also. High levels of infection 

observed in dog populations (canine or CVL) [31] . Through anthro- 

ponotic medium or the zoonotic medium; visceral leishmaniasis 

can be transmitted between human to human or between animal 

and human respectively [3] , and is usually transmitted indirectly 

between hosts by sandflies of the genera Phlebotomus and Lut- 

zomyia [26] . Burattini et al. [11] , developed an SEIR type model be- 

tween sandfly, animal and human populations for zoonotic trans- 

mission of visceral leishmaniasis. Following up, many other mod- 

els [18,24,40–42] consider potential PKDL progression rate in hu- 

mans via the addition of another infective stage. Except few au- 

thors [29,40–42] , the models are rarely validated with recent data. 

The aim of this study is to investigate the seasonal fluctuation of 

VL infection by using mathematical modeling approach with treat- 

ment on infected population. The author applies the model to con- 

trol the seasonal variation of VL in South Sudan. 

The rest of the article is organized as follows, Section 2 , deals 

with the model formulation of VL. In Section 3 , the author dis- 

cusses the mathematical analysis of the VL model. The author 

fits the model outcomes with the number of new VL cases in 

Section 4 . In Section 5 , the author uses Pontryagin’s Maximum 

Principle to find the optimal control strategy of the disease. In 

Section 6 , the effect of various control strategies has been studied 

numerically. The article ends with a conclusions. 

2. Model formulation 

Here, the author considers a simple and basic SIR type model 

with respect to history of infection to describe human population. 

The model comprises of the human, reservoir and sandfly popula- 

tions with seasonally forced biting rates on the sandfly population. 

The human population N H ( t ) is divided into four sub populations 

namely S H , I H , P H and R H . 

N H (t) = S H (t) + I H (t) + P H (t) + R H (t) . 

Similarly, let the reservoir host population be divided into two 

categories, susceptible reservoir, S R ( t ), and infected reservoir, I R ( t ), 

such that 

N R (t) = S R (t) + I R (t) . 

The total vector (sandfly) population, denoted by N V is subdivided 

into susceptible sandflies, S V ( t ), and infected sandflies, I V ( t ), such 

that 

N V (t) = S V (t) + I V (t) . 

All the humans initially remain susceptible to infection ( S H ) and 

are assumed to grow in number with a constant birth �H and 

death μh rate. After being bitten by an infectious sandfly, suscep- 

tible humans are considered to become infected ( I H ) with force of 

infection ab 
I V 
N H 

where a is the mean rate of bites per sandfly and 

b is the sandfly to human (reservoir) transmission probability. Due 

to short incubation period [16] , the author does not consider it in 

the model. Infected humans expire due to VL at an average rate δ, 

or treated at an average rate α1 , and a fraction σ of those recover, 

and the remaining fraction develop PKDL ( P H ). PKDL infected hu- 

mans get treated at an average rate α2 , or recover naturally at an 

average rate β , and acquire immunity ( R H ( t )). A per capita natu- 

ral death rate μh is present in all human sub-compartments. Fol- 

lowing recovery from KA ( I H ) via drug treatment, some individuals 

(5–10%) develop PKDL ( P H ), which is characterised by a nodular or 

papular skin rash. It is non life-threatening. The probability and 

timing of PKDL following KA are key assumptions for interpreting 

surveillance data and in using models to make projections. The oc- 

currence of PKDL is thought to be governed by several factors, in- 

cluding the choice of drugs and adherence to treatment. 

Susceptible reservoirs are enlisted into the population at a fixed 

rate �R , and procure disease after contacts with infected sandflies 

at a rate ab 
I V 
N H 

. The natural mortality rate for reservoirs is μr . 

Susceptible sandflies are recruited at a constant rate �V , and in- 

fected at an average rate equal to ac 
I H 
N H 

+ ac 
P H 
N H 

+ ac 
I R 
N R 

, where c is 

the transmission probability for sandfly infection. The natural mor- 

tality rate for sandfly is μv . 

The author assumes the biting rate in the following form: 

a (t) = a 0 (1 + δr sin 

2 πt 
12 ) . The biting rate a ( t ) of the sandfly popu- 

lation varies periodically with different temperatures which is as- 

sumed to be time periodic with period 12 months. a 0 denote the 

average bitting rate and δr denotes the amplitude of seasonality 

[4,7,36] . With this assumption and the description of the terms, we 

get the following system of differential equations: 

S ′ H = �H − a (t) bI V 
S H 
N H 

− μh S H 

I ′ H = a (t) bI V 
S H 
N H 

− (α1 + δ + μh ) I H 

P ′ H = (1 − σ ) α1 I H − (α2 + β + μh ) P H 

R 

′ 
H = σα1 I H + (α2 + β) P H − μh R H 

S ′ R = �R − a (t) bI V 
S R 
N R 

− μr S R 

I ′ R = a (t) bI V 
S R 
N R 

− μr I R 

S ′ V = �V − a (t) cS V 
I H 
N H 

− a (t) cS V 
P H 
N H 

− a (t) cS V 
I R 
N R 

− μv S V 

I ′ V = acS V 
I H 
N H 

+ acS V 
P H 
N H 

+ acS V 
I R 
N R 

− μv I V 

with 

N 

′ 
H = �H − μh N H − δI H 

N 

′ 
R = �R − μr N R 

N 

′ 
V = �V − μv N V 

3. Basic mathematical properties 

The model (2.1) is biologically well defined in � = { (S H , I H , P H , 

R H , S R , I R , S V , I V ) ∈ R 8 + : S H , I H , P H , R H , S R , I R , S V , I V ≥ 0 , N H ≤ �H 
μh 

, N R ≤
�R 
μr 

, N V ≤ �V 
μv 

} . � is a positive invariant region under the flow 

induced by (2.1). All the parameters of the model are positive. 

Detail description is given in Appendix section. 

3.1. Basic reproduction number 

Let, for each s ∈ R , the 4 × 4 matrix Y ( t, s ), ∀ t ≥ s , satisfies the 

ω-periodic system 

dy 

dt 
= −V (t) y. (3.1) 

and Y (s, s ) = I, where I is the 4 × 4 identity matrix. 

Let, C be the ordered Banach space of all ω-periodic functions 

from R to R 

4 , with maximum norm ||.||. The linear operator L : 

C → C can be defined as 

(Lφ)(t) = 

∫ ∞ 

0 

Y (t, t − a ) F (t − a ) φ(t − a ) d a, ∀ t ∈ R , φ ∈ C. 

(3.2) 
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