
Chaos, Solitons and Fractals 104 (2017) 580–587 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Modeling nonlinear wave regimes in a falling liquid film entrained by 

a gas flow 

O.Yu. Tsvelodub 

a , b , ∗, A .A . Bocharov 

c 

a Kutateladze Institute of Thermophysics, pr. Lavrentieva 1, Novosibirsk 630090, Russia 
b Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia 
c Rzhanov Institute of Semiconductor Physics, pr. Lavrentieva 13, Novosibirsk 630090, Russia 

a r t i c l e i n f o 

Article history: 

Received 5 April 2017 

Revised 29 June 2017 

Accepted 15 September 2017 

Keywords: 

Flowing film 

Gas flow 

Nonlinear model equation 

Stability 

Steady-state traveling solutions 

Soliton solutions 

a b s t r a c t 

The article studies nonlinear waves on a liquid film, flowing under the action of gravity in a known 

stress field at the interface. In the case of small Reynolds numbers, the problem is reduced to solving a 

nonlinear integro-differential equation for the film thickness deviation from the undisturbed level. The 

nature of branching of wave modes of the unperturbed flow with a flat interface has been investigated. 

The steady-state traveling solutions with wave numbers that are far enough from the neutral ones, have 

been numerically found. Using methods of stability theory, the analysis of branching of new families of 

steady-state traveling solutions has been performed. In particular, it is shown that, similarly to the case 

of the falling film, this model equation has solutions in the form of solitons-humps. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The joint flow of liquid and gas is a classical problem of hydro- 

dynamics. Flows of thin liquid films in the presence of countercur- 

rent or cocurrent gas flows are often used in various technological 

applications. To date, various aspects of this problem have been 

considered in numerous works [1–13] . For example, such flows are 

used for cooling the miniature electronic equipment [10] . Nowa- 

days the flowing liquid film has become a subject of a number of 

full review monographs, which have already become classical (see, 

e.g. [14–16] ), but there are yet no such monographs devoted to the 

study of joint flows of viscous film and gas. Rather detailed reviews 

devoted to this problem may be found, e.g. [9,12,13] . The solution 

to this problem in a full conjugated formulation is associated with 

significant computational difficulties, therefore two stages of mod- 

eling are often distinguished: determining gas stresses on the film 

surface and subsequent calculation of wave evolution in the liquid. 

The possibility of the problem staging is justified in particular in 

[9] . 

It becomes possible, since the fluid velocity is usually much 

smaller than the characteristic gas velocity, so the boundary sur- 

face is believed to be rigid and immovable. In addition, because 

of the smallness of the film thickness, the impact of the boundary 
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perturbation on gas velocities may be considered linear. Because of 

this, the problem of calculation of normal and shear stresses of gas 

on the surface is reduced to considering the impact of individual 

spatial harmonics. At the second phase of the joint flow study, the 

dynamics of nonlinear waves on the liquid film surface is investi- 

gated. 

At such staging, the problem both for gas and liquid films 

was considered in various approximations: from laminar flow 

[2,5,6,11,13] to various models of the turbulent gas flow [2,6,8,9,12] . 

To describe the film flow there are also many models: from inte- 

gral models of flows [ 2 , 6 , 11 ] to full Navier–Stokes equations [8] . 

At that, both Cartesian [ 2 , 8 ] and various curvilinear coordinates 

[ 9 , 12 , 17 , 18 ] were considered. Here we will mainly limit to refer- 

ring to the works, directly used during the implementation of this 

study. Here, we are considering the second stage of the study, 

i.e. modeling the dynamics of nonlinear waves on liquid film, en- 

trained by a cocurrent gas flow and falling under the action of 

gravity on the vertical plane, in a known stress field at the in- 

terface. In the same statement the problem is addressed in [12] . 

There, for the case of moderate Reynolds numbers, the steady-state 

traveling solutions were built, including soliton solutions for the 

system of two equations for film thickness and liquid flow rate. 

2. Problem statement 

In [18] for the system of hydrodynamic equations written in 

tensor form, invariant to coordinate systems, for the considered 
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flow in the case of small flow rates ( Re ∼ 1 ) an evolution equation 

for the film thickness h was obtained: 

h t + 

Re 

F r 
h 

2 h x + Re τ0 h h x 

+ ε 
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∂x 

(
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ε Re W h 

3 h xxx + 
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∫ 
ˆ h k kτ ( k ) e ikx dk 

)
= 0 (1) 

Here, Re = ρh 0 u 0 /μ is the Reynolds number, W = σ/ρl 0 u 
2 
0 is 

the Weber number, F r = u 2 
0 
/g h 0 is the Froude number, ε = h 0 / l 0 is 

the ratio of specific film thickness h 0 to the characteristic wave- 

length l 0 . In addition, in Eq. (1) and dimensionless complexes, 

the characteristic scales of velocity u 0 and time l 0 / u 0 were used. 

Here, σ is the coefficient of surface tension, ρ is the density, μ
is the dynamic viscosity of fluid, g is the acceleration of grav- 

ity, τ 0 is the unperturbed component of gas shear stresses on the 

film surface, τ (k ) = τr (k ) + i τim 

(k ) are the Fourier components of 

gas shear stresses, conditioned by the interface curvilinearity, and 

ˆ h ( k, t ) are the Fourier components of the surface form expansion: 

ˆ h ( k, t ) = 

1 

2 π

∫ + ∞ 

−∞ 

h ( x, t ) e −ikx dx, 

Emphasize that in deriving Eq. (1) the approximation of small 

Reynolds numbers ( Re ∼ 1 ) was used, and the Weber number was 

assumed large W ɛ ∼ 1. Eq. (1) accurate to notations coincides with 

the equation obtained in [9] . In addition, some differences in the 

coefficients are due to the fact that it is the countercurrent flow of 

gas that was considered in [9] , and there τ 0 < 0. 

In the case of spatially periodic solutions of Eq. (1) , the integral 

term is replaced with the corresponding series. 

Restricting to perturbations of small but finite amplitude, intro- 

ducing slow and fast times into consideration, and using the trans- 

form: 

h = 1 + ε h 1 , t 0 = t, t 1 = ε t 

from Eq. (1) obtain: 
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From Eq. (2) it follows that in the first approximation (in a 

fast time scale) perturbations of small but finite amplitude prop- 

agate with a characteristic constant velocity: c 0 = Re ( 1 /F r + τ0 ) . 

Eq. (3) describes the nonlinear evolution of perturbations on large 

(slow) times. 

The characteristic longitudinal scale l 0 is chosen for coefficients 

of the second and fourth derivatives in Eq. (3) to be the same. 

Then, for ɛ we obtain: 

ε = 0 , 4 Re 2 ( 1 + F r τ0 ) / 
(
W F r 2 

)
. 

Considering this choice, after the replacement: 

t = b t 1 , h 1 = AH, b = W Re ε/ 3 , A = 2 F rb/ Re ( 2 − F r τ0 ) 

Eq. (3) takes the form [18] : 

∂H 

∂t 
+ 2 H 

∂H 
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∂ 2 H 

∂ x 2 
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∂ 4 H 

∂ x 4 
+ B 

∫ ∞ 

−∞ 

i k 2 τ ( k ) ̂  H ( k, t ) e ikx dk = 0 (4) 

Here B = Re τ0 / ( 2 b ) ≡ 3 τ0 / ( 2 W ε ) . 
Thus, in case of small Reynolds numbers, the problem of per- 

turbations on the surface of the liquid film flowing under the ac- 

tion of gravity in the known stress field at the interface, is reduced 

to considering solutions of one nonlinear integro-differential equa- 

tion. In the case of searching spatial periodic solutions, the integral 

term in (4) is transformed to the corresponding series. 

The aim of this work is to find steady-state traveling periodic 

and soliton solutions of Eq. (4) . 

Eq. (4) is an interesting example of model equations, arising in 

the study of the perturbations evolution in active-dissipative me- 

dia. The instability of linear perturbations is expressed by its terms 

with a second derivative and a term, containing the integral (the 

latter is due to accounting of friction disturbances at the film-gas 

interface), and dissipation is expressed by the fourth derivative, 

modeling capillary effects. The respective impacts of these terms 

are easily illustrated by the study of linear stability of the unper- 

turbed solution H = 0 . Indeed, neglecting the nonlinear term in 

(4) for its linear solutions H ∼ exp ( ik ( x − ct ) ) obt ain the dispersion 

relation: 

c ≡ c r + i c i = i 
(
k − k 3 

)
+ Bkτ ( k ) (5) 

Perturbations are unstable if the imaginary part of the phase 

velocity c is positive. Since the second term in the right part of Eq. 

(5) responsible for the stability of perturbations with decreasing 

wave number k decreases faster than, for example, the first one, 

it is clear that the unstable are the long-wavelength perturbations. 

Their wave numbers are smaller than the neutral wave number k n , 

that satisfies the equation: 

1 − k 2 n + B τim 

( k n ) = 0 (6) 

As is clear from (6) , for the freely falling film ( B = 0 ) the neutral 

wave number k n = 1 . We choose parameters of the unperturbed 

flow for the neutral wave number k n to differ from unity. At that 

it is required for this value of k n to correspond to a definite value 

of τ im 

. The sought value of the parameter B is determined from 

(6) : 

B = 

(
k 2 n − 1 

)
/ τim 

( k n ) . 

In the points with neutral wave numbers k n the periodic 

steady-state traveling linear solutions branch from the trivial so- 

lution H = 0 . As it is clear from (5) , they have a phase velocity and 

frequency, respectively: 

c 0 = B k n τr ( k n ) , ω 0 = k n c 0 = Bk 2 n ( k n ) 

The work [19] showed that in the vicinity of the neutral wave 

number k n the steady-state traveling solutions of small but finite 

amplitude have the form: 

H = A exp [ i ( kx − ωτ ) ] + A 

2 A H2 exp [ 2 i ( kx − ωτ ) ] + C.C. (7)) 

Here k = k n + A k A 

2 , ω = ω 0 + A ω A 

2 , C.C . is the complex- 

conjugated expression. Coefficients A H 2 , A k , A ω depend only on 

τ ( k n ), dτ (k ) /dk | k n , τ (2 k n ). Due to the bulkiness their explicit form 

is not given here. The expression for the phase velocity with accu- 

racy to A 

2 has the form: 

c ≡ ω 

k 
= 

ω 0 + A ω A 

2 

k n + A k A 

2 
= c 0 + 

A 

2 

k n 
( A ω − c 0 A k ) (8) 

To determine the linear response of stresses to interface per- 

turbations the authors of [ 2 , 18 , 20 ] used still popular linear mod- 

els of turbulent gas flow over a wavy surface: the model of Ben- 

jamin (BM) [21] and boundary conditions transfer to the unper- 

turbed level (BCT) [2] . So, for example, data obtained in [18] well 

agree both with calculated and experimental data on friction pul- 

sations from [ 22 , 23 ]. There, using results of [2] the authors studied 

the stability of film flows based both on the integral model and 

Orr-Sommerfeld equations. 

Obtaining results presented below, we used data on friction 

pulsations obtained in [ 18 , 20 ]. In calculations, the profile of the av- 

eraged gas flow velocity from [24] was used. 
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