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a b s t r a c t 

Open hamiltonian systems have typically fractal structures underlying chaotic dynamics with a number 

of physical consequences on transport. We consider such fractal structures related to the formation of 

a chaotic magnetic field line region near the tokamak wall and the corresponding field line dynamics, 

described by a two-dimensional area-preserving map. We focus on the exit basins, which are sets of 

points which originate orbits escaping through some exit and are typically fractal, also exhibiting the 

so-called Wada property. We show qualitative as well as quantitative evidences of these properties. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

An outstanding problem in the physics of magnetically confined 

fusion plasmas is the control of the interaction between plasma 

particles and the inner wall in which they are supposed to be 

contained (e.g. in a tokamak) [1] . Due to the so-called anomalous 

transport, plasma particles escape towards the wall and are lost, 

reducing the plasma density and thus the quality of confinement 

[2,3] . Moreover, since many of these particles can be highly en- 

ergetic they interact with the metallic wall causing the release of 

contaminants through sputtering and other processes [4] . One of 

the proposed ways to control plasma-wall interactions is the use of 

chaotic magnetic fields near the tokamak wall, spanning both the 

plasma outer edge and the scrape-off layer between the plasma 

and wall [5–9] . 

Such a chaotic field line region can be obtained by applying 

suitable magnetic perturbations that break the integrability of the 

magnetic field line flow, causing the appearance of area-filling 

stochastic lines (ergodic magnetic limiter) [10] . The initial claim 

was that such chaotic field would uniformize heat and particle 

loadings, so diminishing localized attacks and their undesirable 

consequences [5–7] . However, both theoretical and experimental 

evidences suggest that this is not true, i.e. the chaotic region can 
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be highly non-uniform and thus the risk of localized loadings can 

only be diminished, if not completely avoided [11–16] . 

This non-uniformity of chaotic regions is ultimately the con- 

sequence of the underlying mathematical structure of chaotic or- 

bits in area-preserving mappings, since they are structured on a 

complicated homoclinic tangle formed by intersections of invariant 

manifolds stemming from unstable periodic orbits embedded in 

the chaotic orbits [17,18] . Hence it is important to use such knowl- 

edge to understand how the escape is structured near the tokamak 

wall, locating possible “hot spots” (i.e. high loading parts of the 

wall) that should be protected so as not to cause extremely local- 

ized particle fluxes from the plasma, for example by using divertor 

configurations [19–21] . 

The main goal of this paper is to show the presence of frac- 

tal structures in the chaotic region of escaping magnetic field lines 

caused by an ergodic limiter, by using a simple area-preserving 

mapping proposed by Martin and Taylor [22] . We observe the pres- 

ence of fractal basins, in the case of two exits [17] , and the so- 

called Wada property in the case of three (or more) exits [23] . We 

emphasize the physical consequences of those mathematical prop- 

erties in terms of escape times and magnetic footprints caused by 

the self-similarity of the fractal structures [24] . 

In previous papers dealing with exit basins due to ergodic lim- 

iter fields we have considered the fractality of exit basins from the 

direct calculation of the box counting dimension of the exit basin 

boundaries, and characterized the Wada property by a qualitative 

argument [11,12] . This may be an insufficient characterization of 
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Fig. 1. Schematic figure showing the basic tokamak geometry in (a) local and (b) rectangular coordinates. 

the exit basin structure because we would like to know the an- 

swer to questions like: (i) to which degree are the fractal basins 

mixed together; or (ii) to what extent is the Wada property ful- 

filled? In this paper we provide answers to these questions by de- 

veloping further the analysis by presenting quantitative techniques 

introduced recently by Sanjuán and coworkers [25–27] . 

This paper is organized as follows: in Section 2 we outline the 

physical model used to describe the ergodic magnetic limiter as 

well as the mapping equations governing the dynamics of the cor- 

responding magnetic field line flow. Section 3 considers the frac- 

tal nature of the escape basin boundary, both qualitatively (us- 

ing the invariant manifold structure as a guide) and quantitatively 

(by computing the box-counting dimension of the boundary). In 

Section 4 we use the concepts of basin entropy and basin boundary 

entropy to characterize the fractality of the exit basins. Section 5 is 

devoted to a discussion of the Wada property for three exit basins 

and to the application of a technique (grid approach) to verify in 

what extent the Wada property is fulfilled by the system. The last 

Section is devoted to our Conclusions. 

2. Magnetic field line map 

A tokamak is a toroidal device for magnetic confinement of fu- 

sion plasmas, in which the plasma is generated by the ionization 

of an injected low-pressure gas (hydrogen) through an induced emf 

caused by the discharge of a capacitor bank [28] . There are two ba- 

sic confining magnetic fields: a toroidal field B T generated by coils 

mounted externally to the toroidal chamber and a poloidal field B P 

generated by the plasma itself. In the axisymmetric case the result- 

ing magnetic field lines are helicoidal, winding on nested toroidal 

surfaces (called magnetic surfaces) [29] . 

A general non-axisymmetric perturbation will break up a cer- 

tain number of these magnetic surfaces. As a result, some of the 

magnetic field lines will no longer lie on surfaces, ergodically fill- 

ing a bounded volume inside the toroidal device. Such magnetic 

field lines will be called chaotic but, since we are dealing with 

strictly time-independent configurations, the word chaos must be 

intended in a Lagrangian sense: two field lines, originated from 

very close points, separate spatially at an exponential rate as wind- 

ing around the torus. Such description can be made rigorous by 

considering a hamiltonian description of magnetic field lines [10] . 

The basic tokamak geometry is depicted in Fig. 1 (a) using cylin- 

drical coordinates ( R, φ, Z ): the tokamak vessel is a torus of major 

radius R = R 0 with respect to the major axis parameterized by co- 

ordinate Z ). The major radius stands for the minor axis, such that 

the position of a field line point can be assigned to the local co- 

ordinates ( r, θ , φ), where R = R 0 + r cos θ and Z = r sin θ . The vari- 

ables θ and φ are also called poloidal and toroidal angles, respec- 

tively. The tokamak wall is located at r = b. 

In this paper we will focus on the production of chaotic field 

lines near the wall of the toroidal device. Hence we can use a sim- 

plified rectangular geometry to describe the situation therein, so 

avoiding the use of unnecessarily complicated coordinate system. 

In this slab geometry description we use three coordinates ( x, y, z ) 

to describe a field line point, where x = bθ stands for the rectified 

arc along the wall, and y = b − r is the radial distance measured 

from the wall (which is located at y = 0 ) [ Fig. 1 (b)]. The coordi- 

nate z = Rφ measures the rectified arc along the toroidal direction. 

The magnetic field line equations in these coordinates are writ- 

ten as 

dx 

B x 
= 

dy 

B y 
= 

dz 

B z 
(1) 

where the equilibrium magnetic field is B 0 = B T + B P . In the 

lowest-order approximation we set B T = B 0 ̂  e z and the field line 

equations can be written as [30] 

dx 

dz 
= 

1 

2 πR 0 

[ α + sy + o(y 2 )] , (2) 

dy 

dz 
= 0 , (3) 

where the parameters α and s are related to the equilibrium 

magnetic field components, by expanding the safety factor q ( r ) 

in a power series around the plasma boundary r = b, such that 

α = 2 πb/q b and s = 2 πbq ′ (b) /q 2 
b 

[30] . Let us take, for example, a 

quadratic profile q (r) = q b r 
2 /b 2 . This yields s = 4 π/q b . Hence our 

choice s = 2 π would correspond to q b = 2 , which is a value in 

agreement with Tokamak experiments. 

The equations (2) and (3) can be integrated, using z as the in- 

dependent variable, such that a Poincaré map is obtained by sam- 

pling the values of x and y just after the n th crossing of a surface of 

section at z = 0 (the z -direction has a well-defined periodicity cor- 

responding to the long way around the torus). In this way we de- 

fine discrete-time variables ( x n , y n ) which are known as functions 

of the same variables at the previous crossing, namely (x n −1 , y n −1 ) . 

The axisymmetric configuration (closed, toroidal magnetic sur- 

faces) can be described in such a framework by a simple twist map 

(after a convenient rescaling of variables, such that 0 ≤ x < 2 π and 

y ≥ 0) (
x n +1 

y n +1 

)
= T 1 

(
x n 
y n 

)
= 

(
x n + s (y n ) y n 

y n 

)
, (4) 

The equality of y for consecutive iterations of the map reflects the 

fact that a field line always lies on a magnetic surface y = const. . 

In this paper we consider a particular kind of symmetry- 

breaking perturbation on the above equilibrium configuration, the 

so-called ergodic limiter, which is a ring-shaped coil at r = b with 

m pairs of straight wire segments of length � , aligned with the 

toroidal direction and conducting a current I [ Fig. 2 ]. The ergodic 
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