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cation. The proposed technique is used for the construction of solutions to a class of fractional Riccati
equations. Recurrence relations between power series parameters yield generating functions which are
used to construct explicit expressions of closed-form solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Even though the idea of fractional differentiation dates back to
Leibniz’s letter to L'Hopital at the end of the 17th century [1], top-
ics related to fractional derivatives and fractional differential equa-
tions have recently become the focus of vigorous research. The rea-
son for renewed attention to this field has been due to the dis-
covery of applications of fractional differential equations in many
areas of science and engineering [2,3]. A comprehensive review on
the application of fractional calculus in physics can be found in [4].
Numerical methods for fractional differential equations are consid-
ered in [5]. Examples of practical applications of fractional calculus
are given in [6].

Fractional differential equations play a central role in viscoelas-
ticity research, which was prompted by the wide use of polymer
materials in engineering applications [7]. Fractional derivatives en-
able the modeling of materials that have memory of their previous
deformations [8,9]. It is shown in [10] that models based on frac-
tional derivative can be used to approximate the behavior of ma-
terials in Magnetic Resonance Elastography. A model of viscoelas-
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ticity employing fractional order derivatives is incorporated into
Maxwell’s equations in [11]. Fractional order controllers of a hexa-
pod robot with viscous friction leg joints is considered in [12]. A
particle-tracking approach using fractional differential equations is
applied to simulate fractional diffusion-reaction processes in [13].
The introduction of fractional derivatives to the harmonic oscil-
lator has led to new oscillatory phenomena [14]. An interpretation
of fractional oscillators as an ensemble average of ordinary har-
monic oscillators governed by a stochastic time arrow is given in
[15]. The frequency and amplitude of the fractional-order Duffing
oscillator are evaluated using a describing function method in [16].
The feedback control system is used as an active control strategy to
control horseshoes chaos in a driven Rayleigh oscillator with frac-
tional deflection in [17]. The eigenvalue spectrum of a fractional
quantum harmonic oscillator is numerically investigated in [18].
Fractional derivatives are one of the novel concepts in recent
advances of biomedical research [19]. In [20], the order of a frac-
tional derivative is used to model two-stage human memory phe-
nomena. It is demonstrated in [21] that nonlinear fractional-order
models can be used to study valproic acid pharmacokinetics. The
effect of fractional derivative order on a delayed predator-prey sys-
tem with harvesting terms is considered in [22]. Lung parenchyma
viscoelasticity is studied using fractional-order models in [23]. A
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fractional calculus approach is used to describe the dynamic be-
havior of cartilage in [24].

A number of new techniques for the construction of solutions to
fractional differential equations have recently been developed. The
waveform relaxation method is used to solve fractional differential-
algebraic equations that arise in integrated circuits with new mem-
ory materials [25]. A spectral decomposition is used in conjunction
with Fourier and Laplace transforms to solve the time-fractional
diffusion equation in [26]. Artificial neural networks are used to
construct numerical solutions to a number of different fractional
differential equations in [27]. Blow-up solutions to the nonlinear
fractional Schrodinger equation are studied using variational argu-
ments and profile decomposition theory in [28].

Solutions to fractional wave-diffusion equations, modified
anomalous fractional sub-diffusion equations and time-fractional
telegraph equations are constructed using semi-analytical tech-
niques based on the Fourier series expansion in [29]. Laplace
and Fourier transforms with respect to both time and space vari-
ables are used to obtain fundamental solutions to the Riesz frac-
tional advection-dispersion equation in [30]. Operational calculus
of the Misukinski type is used to solve initial value problems
on fractional differential equations with generalized Riemann-
Liouville derivatives in [31]. Three time-splitting schemes for non-
linear time-fractional differential equations with smooth solutions
are proposed in [32]. Second order implicit-explicit time-stepping
schemes for nonlinear fractional differential equations with nons-
mooth solutions are considered in [33]. The fractional-order Legen-
dre operational matrix is used to construct approximate solutions
to the fractional Riccati equation in [34].

A number of novel definitions of fractional derivatives have re-
cently been introduced. Generalized fractional operators are ap-
plied to a particular class of nonstandard Lagrangians in [35]. A
mixed integro-differential operator of the Erdélyi-Kober type that
generalizes Riemann-Liouville and Caputo derivatives is introduced
in [36]. Fractional calculus of variations based on the extended
Erdélyi-Kober fractional integral is constructed in [37].

The main objective of this paper is to present an operator-based
framework for the construction of closed-form analytical solutions
to fractional differential equations. To better illustrate this new ap-
proach, we analyse one of the simplest nonlinear fractional-order
models - the Riccati equation:

(vX)"(°D"2)'y = Bo + Biy +Boy%:  k=1.2..... 1)

where ‘D' denotes the Caputo fractional derivative of order 1;
Bo, B] B Bz eR.

The Caputo fractional derivative has been selected for this study
because of its wide range of applications. Futhermore, the selection
of a classical fractional derivative enables to more clearly illustrate
the presented technique for the construction of closed-form solu-
tions to fractional differential equations.

To aid clarity of exposition of the presented method for the
construction of analytical solutions to (1), only fractional deriva-
tives of order % are considered. Derivations and computations
given in this paper can be generalized for fractional derivatives of
rational order I'.

2. Metivation for (1)

Let us consider the ordinary Riccati equation with constant co-
efficients:

d
& By +Biz+ B2,

Bo,Bq,By € R. 2
dx Xo, Zo, bo, b1, b2 € (2)

Z(Xo) = 2Zo;

It is well-known that all solutions to (2) are kink solitary solu-
tions [38]:
exp (B (21 —22) (x — Xo)) — L2 3)
exp (B2(z1 — 22) (x —Xp)) — 22’

=2

where z;,z, € C are roots of the polynomial By + Bz + Byz2.

Direct solution of (2) is not straightforward for many of analyt-
ical solution construction methods. To counter this a typical inde-
pendent variable substitution is used:

t =exp(nx), z(x)=2(t); (4)

This transforms (5) into the Riccati equation with variable coeffi-
cients:
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The general solution to (5) is a meromorphic function. It can be
directly constructed using operator methods [39,40]:

ot — /31
aot — Bo

Thus equation (1) can be considered as a generalization of (5) in
respect of Caputo fractional derivatives.

By + B1Z + B,Z%. (5)

Z= . og, a1, Bo. B eR (6)

3. Preliminaries: main concepts and definitions

In this section, main concepts and definitions of the approach
used to construct solutions to fractional-order nonlinear differen-
tial equations are given.

3.1. Power series extension

Functions that are analyzed in this paper are represented by the
following power series:

+00 Zj
y(z):Zajj—l, z,a;€C. (7)
=0

Coefficients a; are constructed using operator techniques. The fol-
lowing two cases with respect to convergence of (7) in the Cauchy
sense are considered:

1. Series (7) converges for |z| <R; R> 0. Then (7) can be extended
to a wider complex domain (that does not include the sin-
gularities of (7)) using classical extension techniques. Letting
X € R be the argument of this extended function yields a real-
argument power series y(x) that is defined for values of x not
necessarily in the convergence radius |x| <R. In this case, the
extended function y(x) and its power series representation are
considered congruent.

2. Series (7) converges only for |z| =0. In this case, the series
is divergent in the Cauchy sense. However, such series still do
contain important information [41]. Thus (7) can be considered
as structural solutions to fractional differential equations with-
out seeking congruent extended functions.

3.2. Fractional power series

For any x > 0, the following base functions are defined:

-1

X2
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where I' is the gamma function:

I(x) = fo e exp (~£) dé. (9)

zj=2j(x) = ji=01,..; (8)
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