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a b s t r a c t 

An operator-based framework for the construction of analytical soliton solutions to fractional differential 

equations is presented in this paper. Fractional differential equations are mapped from Caputo algebra 

to Riemann-Liouville algebra in order to preserve the additivity of base function powers under multipli- 

cation. The proposed technique is used for the construction of solutions to a class of fractional Riccati 

equations. Recurrence relations between power series parameters yield generating functions which are 

used to construct explicit expressions of closed-form solutions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Even though the idea of fractional differentiation dates back to 

Leibniz’s letter to L’Hopital at the end of the 17th century [1] , top- 

ics related to fractional derivatives and fractional differential equa- 

tions have recently become the focus of vigorous research. The rea- 

son for renewed attention to this field has been due to the dis- 

covery of applications of fractional differential equations in many 

areas of science and engineering [2,3] . A comprehensive review on 

the application of fractional calculus in physics can be found in [4] . 

Numerical methods for fractional differential equations are consid- 

ered in [5] . Examples of practical applications of fractional calculus 

are given in [6] . 

Fractional differential equations play a central role in viscoelas- 

ticity research, which was prompted by the wide use of polymer 

materials in engineering applications [7] . Fractional derivatives en- 

able the modeling of materials that have memory of their previous 

deformations [8,9] . It is shown in [10] that models based on frac- 

tional derivative can be used to approximate the behavior of ma- 

terials in Magnetic Resonance Elastography. A model of viscoelas- 
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ticity employing fractional order derivatives is incorporated into 

Maxwell’s equations in [11] . Fractional order controllers of a hexa- 

pod robot with viscous friction leg joints is considered in [12] . A 

particle-tracking approach using fractional differential equations is 

applied to simulate fractional diffusion-reaction processes in [13] . 

The introduction of fractional derivatives to the harmonic oscil- 

lator has led to new oscillatory phenomena [14] . An interpretation 

of fractional oscillators as an ensemble average of ordinary har- 

monic oscillators governed by a stochastic time arrow is given in 

[15] . The frequency and amplitude of the fractional-order Duffing 

oscillator are evaluated using a describing function method in [16] . 

The feedback control system is used as an active control strategy to 

control horseshoes chaos in a driven Rayleigh oscillator with frac- 

tional deflection in [17] . The eigenvalue spectrum of a fractional 

quantum harmonic oscillator is numerically investigated in [18] . 

Fractional derivatives are one of the novel concepts in recent 

advances of biomedical research [19] . In [20] , the order of a frac- 

tional derivative is used to model two-stage human memory phe- 

nomena. It is demonstrated in [21] that nonlinear fractional-order 

models can be used to study valproic acid pharmacokinetics. The 

effect of fractional derivative order on a delayed predator-prey sys- 

tem with harvesting terms is considered in [22] . Lung parenchyma 

viscoelasticity is studied using fractional-order models in [23] . A 
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fractional calculus approach is used to describe the dynamic be- 

havior of cartilage in [24] . 

A number of new techniques for the construction of solutions to 

fractional differential equations have recently been developed. The 

waveform relaxation method is used to solve fractional differential- 

algebraic equations that arise in integrated circuits with new mem- 

ory materials [25] . A spectral decomposition is used in conjunction 

with Fourier and Laplace transforms to solve the time-fractional 

diffusion equation in [26] . Artificial neural networks are used to 

construct numerical solutions to a number of different fractional 

differential equations in [27] . Blow-up solutions to the nonlinear 

fractional Schrödinger equation are studied using variational argu- 

ments and profile decomposition theory in [28] . 

Solutions to fractional wave-diffusion equations, modified 

anomalous fractional sub-diffusion equations and time-fractional 

telegraph equations are constructed using semi-analytical tech- 

niques based on the Fourier series expansion in [29] . Laplace 

and Fourier transforms with respect to both time and space vari- 

ables are used to obtain fundamental solutions to the Riesz frac- 

tional advection-dispersion equation in [30] . Operational calculus 

of the Misuki ́nski type is used to solve initial value problems 

on fractional differential equations with generalized Riemann- 

Liouville derivatives in [31] . Three time-splitting schemes for non- 

linear time-fractional differential equations with smooth solutions 

are proposed in [32] . Second order implicit-explicit time-stepping 

schemes for nonlinear fractional differential equations with nons- 

mooth solutions are considered in [33] . The fractional-order Legen- 

dre operational matrix is used to construct approximate solutions 

to the fractional Riccati equation in [34] . 

A number of novel definitions of fractional derivatives have re- 

cently been introduced. Generalized fractional operators are ap- 

plied to a particular class of nonstandard Lagrangians in [35] . A 

mixed integro-differential operator of the Erdélyi-Kober type that 

generalizes Riemann-Liouville and Caputo derivatives is introduced 

in [36] . Fractional calculus of variations based on the extended 

Erdélyi-Kober fractional integral is constructed in [37] . 

The main objective of this paper is to present an operator-based 

framework for the construction of closed-form analytical solutions 

to fractional differential equations. To better illustrate this new ap- 

proach, we analyse one of the simplest nonlinear fractional-order 

models – the Riccati equation: (√ 

x 
)k ( C D 

1 / 2 
)k 

y = B 0 + B 1 y + B 2 y 
2 ; k = 1 , 2 , . . . , (1) 

where C D 

1/2 denotes the Caputo fractional derivative of order 1 
2 ; 

B 0 , B 1 , B 2 ∈ R . 

The Caputo fractional derivative has been selected for this study 

because of its wide range of applications. Futhermore, the selection 

of a classical fractional derivative enables to more clearly illustrate 

the presented technique for the construction of closed-form solu- 

tions to fractional differential equations. 

To aid clarity of exposition of the presented method for the 

construction of analytical solutions to (1) , only fractional deriva- 

tives of order 1 
2 are considered. Derivations and computations 

given in this paper can be generalized for fractional derivatives of 

rational order m 

n . 

2. Motivation for (1) 

Let us consider the ordinary Riccati equation with constant co- 

efficients: 

d z 

d x 
= B 0 + B 1 z + B 2 z 

2 , z ( x 0 ) = z 0 ; x 0 , z 0 , B 0 , B 1 , B 2 ∈ R . (2) 

It is well-known that all solutions to (2) are kink solitary solu- 

tions [38] : 

z = z 2 
exp ( B 2 ( z 1 − z 2 ) ( x − x 0 ) ) − z 1 ( z 0 −z 2 ) 

z 2 ( z 0 −z 1 ) 

exp ( B 2 ( z 1 − z 2 ) ( x − x 0 ) ) − z 0 −z 2 
z 0 −z 1 

, (3) 

where z 1 , z 2 ∈ C are roots of the polynomial B 0 + B 1 z + B 2 z 
2 . 

Direct solution of (2) is not straightforward for many of analyt- 

ical solution construction methods. To counter this a typical inde- 

pendent variable substitution is used: 

t = exp ( ηx ) , z(x ) = ̂

 z ( t ) ; (4) 

This transforms (5) into the Riccati equation with variable coeffi- 

cients: 

ηt 
d ̂

 z 

d t 
= B 0 + B 1 ̂  z + B 2 ̂  z 2 . (5) 

The general solution to (5) is a meromorphic function. It can be 

directly constructed using operator methods [39,40] : 

̂ z = 

α1 t − β1 

α0 t − β0 

, α0 , α1 , β0 , β1 ∈ R . (6) 

Thus equation (1) can be considered as a generalization of (5) in 

respect of Caputo fractional derivatives. 

3. Preliminaries: main concepts and definitions 

In this section, main concepts and definitions of the approach 

used to construct solutions to fractional-order nonlinear differen- 

tial equations are given. 

3.1. Power series extension 

Functions that are analyzed in this paper are represented by the 

following power series: 

y (z) = 

+ ∞ ∑ 

j=0 

a j 
z j 

j! 
, z, a j ∈ C . (7) 

Coefficients a j are constructed using operator techniques. The fol- 

lowing two cases with respect to convergence of (7) in the Cauchy 

sense are considered: 

1. Series (7) converges for | z | < R ; R > 0. Then (7) can be extended 

to a wider complex domain (that does not include the sin- 

gularities of (7) ) using classical extension techniques. Letting 

x ∈ R be the argument of this extended function yields a real- 

argument power series y ( x ) that is defined for values of x not 

necessarily in the convergence radius | x | < R . In this case, the 

extended function y ( x ) and its power series representation are 

considered congruent. 

2. Series (7) converges only for | z| = 0 . In this case, the series 

is divergent in the Cauchy sense. However, such series still do 

contain important information [41] . Thus (7) can be considered 

as structural solutions to fractional differential equations with- 

out seeking congruent extended functions. 

3.2. Fractional power series 

For any x ≥ 0, the following base functions are defined: 

z j = z j (x ) := 

x 
j−1 
2 

�
(

j+1 
2 

) , j = 0 , 1 , . . . ; (8) 

where � is the gamma function: 

�( x ) = 

∫ + ∞ 

0 

ξ x −1 exp ( −ξ ) d ξ . (9) 
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