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a b s t r a c t 

The aim of this paper is to investigate the control of chaotic Burke-Shaw system using Pyragas method. 

This system is derived from Lorenz system which has several applications in physics and engineering 

(e.g. secure communications). The linear stability and the existence of Hopf bifurcation of this system 

are investigated. Based on the characteristic equation, a theorem is stated and proved. This theorem is 

used to calculate the interval values of the time delay τ at which this system is stable (unstable). By 

establishing appropriate time delay τ and feedback strength K ranges, one of the unstable equilibria of 

this system can be controlled to be stable. 

We, also, introduced the fractional version of this system which is not studied in the literature as far as 

we know. The advantage of the fractional order system is that, the system has extra parameter which 

enriches its dynamics. Increasing the number of parameters may be used to increase the security of 

the transmitted information. We apply the Pyragas method to control the chaotic behavior of fractional 

Burke–Shaw system. As we did for the integer order, we determine the values of τ and K which guarantee 

that the fractional version is stable. Finally, to support the analytical results, some numerical simulations 

are carried out which indicate that chaotic solution is turned to be stable if τ passes through certain 

intervals. The bifurcation diagrams are calculated. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the literature, due to unexpected behaviors that may emerge 

from a chaotic system, chaos control and synchronization have ac- 

quired increasing attention. Recently the trend of analyzing and 

understanding chaos has been extended to control and utilize 

chaos. The main goal of chaos control is to eliminate chaotic be- 

havior and to stabilize the chaotic system at one of the sys- 

tem’s equilibrium points. Many control techniques have been de- 

veloped, such as passive control [1,2] , optimal control method [3] , 

impulsive control [4] , and many others. Most of these methods 

are developments of two basic approaches: the Ott–Grebogi–Yorke 

method (OGY) [5] and time delay feedback control [6] . The main 

idea of the OGY control method is making only small time depen- 

dent perturbations of the parameter of chaotic systems since the 

system attractors have embedded within it an infinite number of 

unstable periodic orbits. The time delay feedback control method 
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was introduced by Pyragas [6] . The idea of this method is to in- 

ject an appropriate continuous controlling signal into the system 

which is proportional to the difference between the present state 

of a given system Y ( t ) and its delayed value Y (t − τ ) . By choosing 

proper time delay, this difference is practically zero as the system 

evolves close to the desired steady state or periodic orbit which 

means stabilization. The advantage of this method is that the de- 

layed control has no need for a reference system. Since it generates 

the control force from the information of the system itself. More- 

over, this method is simpler and convenient in controlling chaos 

for a continuous dynamical system. Thus, time delayed feedback 

control has been used in a large variety of applications such as bi- 

ology, medicine, chemistry, engineering and physics [7–10] . 

On the other hand, the theory of fractional calculus has be- 

come emerging field of research in both theories and applications 

in recent years. Now, fractional order differential equations have 

revealed to be significant mechanism in the modeling of numerous 

real-world applications of various fields such as physics, biology, 

engineering and so on [11–13] . The advantage of the fractional or- 

der system, is that, the system has extra parameter (or parameters) 

may be used to increase the security of the transmitted informa- 

tion [14,15] . The degree of freedom of a system is the number of 
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parameters of the system that may vary independently. Therefore, 

some of the researchers have been introduced fractional calculus 

into neural networks and secure communication due to incorpo- 

rate the infinite memory (previous response) [16,17] . There are dif- 

ferent analytical techniques have been used to study the fractional 

order systems such as multiple-scale approach [18] , the differential 

transform method [19] , the homotopy analysis method [20] and 

averaging method [21–23] . Moreover, fractional order systems with 

time delay are commonly encountered in many fields. For example, 

the dynamic behavior of HIV infection of CD4 + T-cells and motion 

control systems with actuator limitation are introduced depending 

on delay fractional order [24–26] . Wen et al. studied the dynamical 

characteristics of Mathieu–Duffing oscillator under fractional order 

feedback coupling with time delay [27] . Designing circuit models 

for synchronization of fractional order chaotic systems with time 

delay are investigated by Atan [28] . There are a lot of control meth- 

ods in fractional order dynamical systems such as active control 

[29,30] , sliding mode control [31] and tracking control [32] . 

Now, owing to the significance of the earlier mentioned work 

related to feedback control method, we should record that many 

authors became interested in studying the effect of this method to 

control chaotic systems with integer order see [33–37] . To the best 

of our knowledge, although there are numerous results discussing 

the control of chaotic system with integer order using time delayed 

feedback control, few results on the literature discussing the con- 

trol of chaotic systems with fractional order, such as Gjurchinovski 

et al. [38] . They showed that the time delayed feedback control can 

be used to stabilize unstable steady states and unstable periodic 

orbits in fractional-order Rössler system. While Huang et al. used 

delayed feedback controller to control the creation of bifurcation 

for delayed fractional predator–prey system with incommensurate 

orders [39] . 

The main contribution of this paper is to control Burke-Shaw 

chaotic system [40] via the time delayed feedback control. Regard- 

ing the time delay as a parameter, the effect of time delay on the 

dynamics of this system is explored. More specifically, we study 

the local stability and the existence of Hopf bifurcation of thus sys- 

tem. In addition, we demonstrate that chaos vanishes as the time 

delay reaches a certain value and we try to extend these results 

for fractional version of this system. 

The remainder of the paper is organized as follows: in 

Section 2 , we give a brief description of Burke–Shaw system 

[40] with integer and fractional orders. In Section 3 , we investi- 

gate the problem of controlling chaos of the Burke–Shaw system 

with integer order. We consider the stability of one of the fixed 

points and determine the ranges of delay τ at which the fixed 

point of the chaotic system can be controlled to be stable. We also 

obtain some sufficient conditions under which the Hopf bifurca- 

tions occur. While, in Section 4 , we turn to scrutinize the control 

of fractional version of Burke–Shaw system via time delayed feed- 

back control. We discuss the stability of the equilibrium and the 

occurrence of Hopf bifurcations. A bifurcation set is provided in the 

appropriate parameter plane. Finally, a conclusion is addressed to 

summary our works. 

2. Description of Burke–Shaw system with integer and 

fractional order 

The Burke–Shaw system has been derived by Burke and Shaw 

from the Lorenz equations [40] . It is a three dimensional sys- 

tem that possesses two quadratic nonlinear terms. The Burke–

Shaw system was evolved from the Lorenz system, and therefore 

has similar algebraic structure to that of the Lorenz system, but 

is topologically nonequivalent. Detailed structural and parametric 

analyses have been reported in [41,42] . The governing equations of 

the system are: 

˙ x (t) = −S ( x (t) + y (t) ) , 

˙ y (t) = −y (t) − Sx (t ) z(t ) , 

˙ z (t) = V + Sx (t) y (t) , (1) 

where x, y and z are the state variables, S and V are constant pa- 

rameters. We note that system (1) is invariant under the change 

of variables (x, y, z) � −→ (−x, −y, z) . Consequently, it is symmetric 

with respect to the z - axis (i.e. (−x (t) , −y (t) , z(t)) is also a solu- 

tion). For S > 0, V > 0 this system has two fixed points: 

F ± = 

( 

±
√ 

V 

S 
, ∓

√ 

V 

S 
, 

1 

S 

) 

. 

The Burke–Shaw system (1) exhibits a chaotic attractor for the val- 

ues V = 4 . 272 and S ∈ [1 , 12 . 06] . Also, it has chaotic attractor when 

S = 10 and V ∈ [1 . 64 , 2 . 4] ∪ [3 . 65 , 20] . In Fig. 1 , we plot the Lya- 

punov exponents versus S and V . It is clear that one of them is 

positive which means that system (1) is chaotic. 

We introduce the fractional version of Burke–Shaw system as: 

D 

αx (t) = −S ( x (t) + y (t) ) , 

D 

αy (t) = −y (t) − Sx (t ) z(t ) , 

D 

αz(t) = V + Sx (t) y (t) , (2) 

where x, y, z ∈ R , S, V > 0 , α ∈ (0, 1] and D 

α is the Caputo differen- 

tial operator of order α [43] . Systems (1) and (2) have the same 

equilibrium points. Assuming the Jacobian matrix of (2) at the 

equilibrium point F + is 

J(F + ) = 

( −S −S 0 

−1 −1 −√ 

V S 

−√ 

V S 
√ 

V S 0 

) 

. 

Let the eigenvalues of J(F + ) be ( λ1 , λ2 , λ3 ). According to the the- 

ory of stability for fractional order systems if | arg (λl ) | > 

απ
2 , (l = 

1 , 2 , 3) , then (2) is locally asymptotically stable at the equilibrium 

point. For the choice S = 10 , V = 4 . 272 and α = 0 . 95 , the equilib- 

rium points of (2) are 

F ± = ( ±0 . 6536 , ∓0 . 6536 , 0 . 1 ) . 

The corresponding eigenvalues at F + are λ1 = −12 . 8499 , λ2 , 3 = 

0 . 9249 ± 8 . 102 i and that arg (λ1 ) = π, arg (λ2 ) = 1 . 45712 and 

arg (λ3 ) = 4 . 82607 . Therefore, the equilibrium point F + of (2) is 

unstable. 

3. Chaos control of integer order Burke–Shaw system (1) 

In this section, we investigate the problem of controlling chaos 

of system (1) . We add the control function K(y (t) − y (t − τ )) to 

the second equation of system (1) , where τ ≥ 0 is a constant time 

delay, K is the feedback strength. Then the delayed feedback con- 

trol system can be written as: 

˙ x (t) = −S ( x (t) + y (t) ) , 

˙ y (t) = −y (t) − Sx (t ) z(t ) + K ( y (t) − y (t − τ ) ) , 

˙ z (t) = V + Sx (t) y (t) . (3) 

By using the delay τ as a bifurcation parameter in controlled sys- 

tem (3) , we get the conditions under which chaotic attractor of this 

system vanishes. By linearizing system (3) at F + yields the follow- 

ing linear system: 

˙ x (t) = −S ( x (t) + y (t) ) , 

˙ y (t) = −y (t) − Sz ∗x (t) − Sx ∗z(t) + K ( y (t) − y (t − τ ) ) , 

˙ z (t) = V + Sy ∗x (t) + Sx ∗y (t) . (4) 
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