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1. Introduction and main results

We consider the following second order Hamiltonian systems
with an obstacle, that is,

X=f(t,x), if teR\W, (11)
associated with the conditions
X(t7) =—x(t*)., if rew,
x(t) =0, VteR, (1.2)
x(t)=x(t+T), VteR,

where W = {t e R| x(t) =0}, f: RxR— R is T-periodic in t, con-
tinuous for all t and xeR.

Definition 1.1 (see [13]). Continuous map x: R— R is a nontriv-
ial periodic bouncing solution of system (1.1), if it satisfies (1.1),
(1.2) and
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(1) the set W is nonempty and discrete,
(2) there exists at least one tg € W such that x(t;) # 0.

We say that there is a real impact at to e W, if X(t; ) # 0. We call
systems having solutions satisfying Definition 1.1 as impact Hamil-
tonian systems. In mechanics, (1.1) and (1.2) mean that the parti-
cle moves in the positive half-axis x>0 and bounces in a perfectly
way when it hits the obstacle at equilibrium point x = 0.

Widely applied in physics and engineering, impact systems
have been considered by numerous authors (see [1,3,11-13,16]) us-
ing topological method. But the main difficulty of this kind of
problem is that one can not specify the zero set of a bouncing
periodic solution of (1.1). To the authors’ knowledge, in paper [8],
Jiang firstly presented a variational approach (Symmetric Mountain
Pass Lemma) to study the impact systems, and established the ex-
istence of a sequence of bouncing solutions for second order im-
pact Hamiltonian systems under a classical superquadratic condi-
tion

f(t,x) >0F(t,x) >0, x>r>0 (where constant§ > 2),

and

JF(t, x)

5 <C(1+F(t,x)),

xe]0,+00), C>0,
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where F(t,x) = fa‘ f(t,s)ds. Then, in paper [4], Ding considered the
existence of subharmonic bouncing solutions for system (1.1) with
sublinear conditions, that is, f satisfies

(Fp) there exist two functions gelLl'([0,T];R),y €
L'([0,T]; [0, +00)) and a constant « €0, 1) such that

llillnsup |f(£, %) —gO/1x]* = y (0, (13)
X|—+00

for all xR and uniformly a.e.t< [0, T], and

F(t,x)/|x|** - 400 as |x| = +oo, (1.4)

and F satisfies

JE(t, x)

5t < ooF(t,x),

ae te[0,T], xel0,+c0).

for some constant o> 0. In paper [5], Ding generalized his result
in [4] by replacing condition (1.4) with

}ilmian(t,x)/|x|2°‘ > k*|\gllZ /24,  keN, ae.tel0,2m].
X|—+00

Different from the methods in papers [4,5,8], we firstly prove
a Generalized Nonsmooth Saddle Point Theorem, then apply it
to find out nontrivial kT-periodic bouncing solutions for system
(1.1) with another sublinear condition different from (1.3) and (1.4).

Define set I ={heC(([0,+0),[0,+00)) | hsatisfies (h1) —
(h4)}, where

(h1) h(s) <h(t) +C,

Oand s,t €[0,+o0) withs <t,

(h2) h(s+1t) < C*(h(s) +h(t)),
0and Vs, t € [0, +00),

(h3) th(t) — 2H(t) - —oo, ast — +oo,

(h4) H(t)/t%2 - 0, as t — +oo, and
H(t) := fé h(s)ds. Indeed, h(t) =t*(«x €[0,1)) and h(t) = In(1 +¢)
can be in I, thus I" #4.

We suppose that function f satisfies the following conditions,

for a certain constant C >

for a certain constant C* >

(f) there exist T-periodic functions y,ge L'([0,T]. (0, +00)) and
function heI" such that

[ft, x)| <y@)h(x|) +g), VxeRand te[0,T]. (15)
(F1) The function h comes from condition (f) satisfies
1 T
lim su 7/ F(t, |x|)dt <O. 1.6
|X|~>+o£) H(lx]) Jo (& Ixl)dr < (18)

(F2) Function f{ -, x) is differentiable for a.e. t€ [0, T] and there exists
a constant o > 0 such that

< —0oF(t,x), ae. te[0,T]andx ¢ [0, +00).

OF(t, %)
Jat

In this paper, we assume x(t;) < 0, and x(t;) < 0 if ¢; is a real
impact. Let x be a kT-periodic nontrivial bouncing solution of sys-
tem (1.1) with isolated zeros {f;}7; with 0<t; <ty <--+ <tq <kT.
Integrate (1.1) on [0, kT], one has

kT kT
/ ide = [ fe x@)dt,
0 0
while,
kT n titq n n
/ #(0)dt = Z/ £(Odt =" (}(E6,) - X(EH) =23 %),
0 j=0 7t j=0 Jj=1

where ty =0 and t,,,; = kT. It follows that

kT n
/O £t x(0)dt =2 ];x(rj ). (1.7)

If there is at least one real impact, (1.7) implies
kT

Ft, x(6))dt < 0.

To ensure that there exists a real impact at least, we give the fol-
lowing condition (B),

(B) Function f(t, x) <0 holds for all t€[0, T] and x> 0, furthermore,
Xlir+n f(t,x) = —o0 or limsup f(t,x) <0 hold for te][0, T].
— T X——+00

Now we list our main result of periodic bouncing solution as
following.

Theorem 1.1. Suppose function f satisfies conditions (B), (f), (F1) and
(F2), then system (1.1) possesses nontrivial kT-periodic bouncing solu-
tions uy, for every sufficiently large integer k. Furthermore, ||uy|lcc —
+oo as k — +oo.

There are functions f (see Example 4.1 in Section 4) satisfying
our theorem but dissatisfying the conditions in [4].

Remark 1.1. In this paper, we replace the control term |x| of f with
a more general function h(|x|). Actually, condition (1.3) is a spe-
cial case of (1.5), if h(t) =t%(x € [0, 1)). Moreover, our condition
(1.6) is different from condition (1.4).

Remark 1.2. With our conditions (1.5) and (1.6), we can not use
the same methods used in papers [4,5,8] to prove ||x;|lcc — 400 as
k — +o0. Therefore, we firstly prove a Generalized Nonsmooth Sad-
dle Point Theorem in Section 2, using the good property of which,
then we can overcome the difficulty (see Lemma 3.6).

By the same analysis as in paper [8], we know that, if x: R— R
is a kT-periodic solution with isolated zeros of

X = f(t, |x])sgn(x), (1.8)

then |x| is a nontrivial kT-periodic bouncing solution of system

) x/Ixl,  x#0,
(1.1), where sgn(x) is defined as sgn(x) = 0 0
, x=0.

Our paper is organized as follows. In Section 2, we recall some
notions about locally Lipschitzian functionals from [2] and [7], and
give a Generalized Nonsmooth Saddle Point Theorem and some
preliminaries. In Section 3, we give the proof of Theorem 1.1. Based
on above analysis, we need two steps to prove Theorem 1.1. Paper
[8] tells us that the corresponding functional of (1.8) is only locally
Lipschitzian. So we firstly use our Generalized Nonsmooth Saddle
Point Theorem in Section 2 to obtain kT-periodic solution x; for
equation (1.8). Then, with assumption (B), we prove the zero set
W, = {t e R| x;(t) = 0} is nonempty and the points in W), are in-
deed isolated. In Section 4, an example is given to illustrate our
Theorem 1.1.

2. Generalized nonsmooth saddle point theorem and
preliminaries

Firstly, we recall some notions for locally Lipschitzian function-
als. We refer to papers [2,7] for details.

Let E* be the dual space of E. The generalized direction deriva-
tive of functional ¢ at Xy €E in the direction of v € E is defined by

¢ (x0: v) = limsup L0 +h+tvt) — (o +h)
h—0,t—0+

and the functional v— ¢0(xg; v) is subadditive, positively homo-
geneous, convex and continuous. The Clarke generalized gradient
dp(xg) of ¢ at xq is

9o (xo) = {(we E* | (w,v) <@ (x0,1),Y veE),

which is a nonempty, convex, and weak*-compact subset of E*. A
point xg €E is said to be a critical point of ¢, if 0 € d@(xg). In case
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