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a b s t r a c t 

The Generalized Nonsmooth Saddle Point Theorem is proved, which generalizes the previous ones. As its 

application, we obtain the existence of nontrivial periodic bouncing solution for systems ẍ = f (t, x ) with 

new sublinear conditions, which has physical background. 
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1. Introduction and main results 

We consider the following second order Hamiltonian systems 

with an obstacle, that is, 

ẍ = f (t, x ) , if t ∈ R \ W, (1.1) 

associated with the conditions ⎧ ⎪ ⎨ ⎪ ⎩ 

˙ x 
(
t −
)

= − ˙ x 
(
t + 
)
, if t ∈ W, 

x ( t ) ≥ 0 , ∀ t ∈ R , 

x ( t ) = x ( t + T ) , ∀ t ∈ R , 

(1.2) 

where W = { t ∈ R | x (t) = 0 } , f : R × R → R is T -periodic in t , con- 

tinuous for all t and x ∈ R . 

Definition 1.1 (see [13] ) . Continuous map x : R → R is a nontriv- 

ial periodic bouncing solution of system (1.1) , if it satisfies (1.1), 

(1.2) and 
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(1) the set W is nonempty and discrete, 

(2) there exists at least one t 0 ∈ W such that ˙ x (t −
0 
) � = 0 . 

We say that there is a real impact at t 0 ∈ W , if ˙ x (t −
0 
) � = 0 . We call 

systems having solutions satisfying Definition 1.1 as impact Hamil- 

tonian systems . In mechanics, (1.1) and (1.2) mean that the parti- 

cle moves in the positive half-axis x ≥ 0 and bounces in a perfectly 

way when it hits the obstacle at equilibrium point x = 0 . 

Widely applied in physics and engineering, impact systems 

have been considered by numerous authors (see [1,3,11–13,16] ) us- 

ing topological method. But the main difficulty of this kind of 

problem is that one can not specify the zero set of a bouncing 

periodic solution of (1.1) . To the authors’ knowledge, in paper [8] , 

Jiang firstly presented a variational approach (Symmetric Mountain 

Pass Lemma) to study the impact systems, and established the ex- 

istence of a sequence of bouncing solutions for second order im- 

pact Hamiltonian systems under a classical superquadratic condi- 

tion 

f (t, x ) ≥ θF (t, x ) > 0 , x ≥ r > 0 ( where constant θ > 2) , 

and ∣∣∣∣∂F (t, x ) 

∂t 

∣∣∣∣ ≤ C(1 + F (t, x )) , x ∈ [0 , + ∞ ) , C > 0 , 
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where F (t, x ) = 

∫ x 
0 f (t, s ) d s . Then, in paper [4] , Ding considered the 

existence of subharmonic bouncing solutions for system (1.1) with 

sublinear conditions, that is, f satisfies 

( F 0 ) there exist two functions g ∈ L 1 ([0 , T ] ; R ) , γ ∈ 

L 1 
(
[0 , T ] ; [0 , + ∞ ) 

)
and a constant α ∈ [0, 1) such that 

lim sup 

| x |→ + ∞ 

| f (t, x ) − g(t) | / | x | α ≤ γ (t) , (1.3) 

for all x ∈ R and uniformly a.e. t ∈ [0, T ], and 

F (t, x ) / | x | 2 α → + ∞ as | x | → + ∞ , (1.4) 

and F satisfies ∣∣∣∣∂F (t, x ) 

∂t 

∣∣∣∣ ≤ σ0 F (t, x ) , a.e. t ∈ [0 , T ] , x ∈ [0 , + ∞ ) . 

for some constant σ 0 > 0. In paper [5] , Ding generalized his result 

in [4] by replacing condition (1.4) with 

lim inf | x |→ + ∞ 

F (t, x ) / | x | 2 α > k 2 ‖ g‖ 

2 
L 1 / 24 , k ∈ N 

∗, a.e. t ∈ [0 , 2 π ] . 

Different from the methods in papers [4,5,8] , we firstly prove 

a Generalized Nonsmooth Saddle Point Theorem, then apply it 

to find out nontrivial kT -periodic bouncing solutions for system 

(1.1) with another sublinear condition different from (1.3) and (1.4) . 

Define set � = { h ∈ C([0 , + ∞ ) , [0 , + ∞ )) | h satisfies (h 1) −
(h 4) } , where 

(h 1) h (s ) ≤ h (t) + C, for a certain constant C > 

0 and s, t ∈ [0 , + ∞ ) with s ≤ t, 

(h 2) h (s + t) ≤ C ∗
(
h (s ) + h (t) 

)
, for a certain constant C ∗ ≥

0 and ∀ s, t ∈ [0 , + ∞ ) , 

(h 3) th (t) − 2 H(t) → −∞ , as t → + ∞ , 

(h 4) H(t) / t 2 → 0 , as t → + ∞ , and 

H(t) := 

∫ t 
0 h (s ) d s . Indeed, h (t) = t α(α ∈ [0 , 1)) and h (t) = ln (1 + t) 

can be in �, thus � � = ∅ . 
We suppose that function f satisfies the following conditions, 

(f) there exist T -periodic functions γ , g ∈ L 1 
(
[0 , T ] , (0 , + ∞ ) 

)
and 

function h ∈ � such that 

| f (t, x ) | ≤ γ (t) h (| x | ) + g(t) , ∀ x ∈ R and t ∈ [0 , T ] . (1.5) 

(F1) The function h comes from condition (f) satisfies 

lim sup 

| x |→ + ∞ 

1 

H(| x | ) 
∫ T 

0 

F (t, | x | ) d t < 0 . (1.6) 

(F2) Function f ( · , x ) is differentiable for a.e. t ∈ [0, T ] and there exists 

a constant σ > 0 such that 

∣∣∣∣∂F (t, x ) 

∂t 

∣∣∣∣ ≤ −σ F (t, x ) , a.e. t ∈ [0 , T ] and x ∈ [0 , + ∞ ) . 

In this paper, we assume ˙ x (t −
i 
) ≤ 0 , and ˙ x (t −

i 
) < 0 if t i is a real 

impact. Let x be a kT -periodic nontrivial bouncing solution of sys- 

tem (1.1) with isolated zeros { t i } n i =1 
with 0 < t 1 < t 2 < ��� < t n < kT . 

Integrate (1.1) on [0, kT ], one has ∫ kT 

0 

ẍ (t) d t = 

∫ kT 

0 

f (t, x (t)) d t, 

while, ∫ kT 

0 

ẍ (t) d t = 

n ∑ 

j=0 

∫ t j+1 

t j 

ẍ (t) d t = 

n ∑ 

j=0 

(
˙ x (t −

j+1 
) − ˙ x (t + 

j 
) 
)

= 2 

n ∑ 

j=1 

˙ x (t −
j 
) , 

where t 0 = 0 and t n +1 = kT . It follows that ∫ kT 

0 

f (t, x (t)) d t = 2 

n ∑ 

j=1 

˙ x (t −
j 
) . (1.7) 

If there is at least one real impact, (1.7) implies ∫ kT 

0 

f (t, x (t)) d t < 0 . 

To ensure that there exists a real impact at least, we give the fol- 

lowing condition (B), 

(B) Function f ( t, x ) ≤ 0 holds for all t ∈ [0, T ] and x ≥ 0, furthermore, 

lim 

x → + ∞ 

f (t, x ) = −∞ or lim sup 

x → + ∞ 

f (t, x ) < 0 hold for t ∈ [0, T ]. 

Now we list our main result of periodic bouncing solution as 

following. 

Theorem 1.1. Suppose function f satisfies conditions (B), ( f ), ( F 1) and 

( F 2), then system (1.1) possesses nontrivial kT-periodic bouncing solu- 

tions u k for every sufficiently large integer k. Furthermore, ‖ u k ‖ ∞ 

→ 

+ ∞ as k → + ∞ . 

There are functions f (see Example 4.1 in Section 4 ) satisfying 

our theorem but dissatisfying the conditions in [4] . 

Remark 1.1. In this paper, we replace the control term | x | of f with 

a more general function h (| x |). Actually, condition (1.3) is a spe- 

cial case of (1.5) , if h (t) = t α(α ∈ [0 , 1)) . Moreover, our condition 

(1.6) is different from condition (1.4) . 

Remark 1.2. With our conditions (1.5) and (1.6) , we can not use 

the same methods used in papers [4,5,8] to prove ‖ x k ‖ ∞ 

→ + ∞ as 

k → + ∞ . Therefore, we firstly prove a Generalized Nonsmooth Sad- 

dle Point Theorem in Section 2 , using the good property of which, 

then we can overcome the difficulty (see Lemma 3.6 ). 

By the same analysis as in paper [8] , we know that, if x : R → R 

is a kT -periodic solution with isolated zeros of 

ẍ = f (t, | x | ) sgn (x ) , (1.8) 

then | x | is a nontrivial kT -periodic bouncing solution of system 

(1.1) , where sgn( x ) is defined as sgn (x ) = 

{
x/ | x | , x � = 0 , 

0 , x = 0 . 

Our paper is organized as follows. In Section 2 , we recall some 

notions about locally Lipschitzian functionals from [2] and [7] , and 

give a Generalized Nonsmooth Saddle Point Theorem and some 

preliminaries. In Section 3 , we give the proof of Theorem 1.1 . Based 

on above analysis, we need two steps to prove Theorem 1.1 . Paper 

[8] tells us that the corresponding functional of (1.8) is only locally 

Lipschitzian. So we firstly use our Generalized Nonsmooth Saddle 

Point Theorem in Section 2 to obtain kT -periodic solution x k for 

equation (1.8) . Then, with assumption (B), we prove the zero set 

W k = { t ∈ R | x k (t) = 0 } is nonempty and the points in W k are in- 

deed isolated. In Section 4 , an example is given to illustrate our 

Theorem 1.1 . 

2. Generalized nonsmooth saddle point theorem and 

preliminaries 

Firstly, we recall some notions for locally Lipschitzian function- 

als. We refer to papers [2,7] for details. 

Let E ∗ be the dual space of E . The generalized direction deriva- 

tive of functional ϕ at x 0 ∈ E in the direction of v ∈ E is defined by 

ϕ 

0 (x 0 ; v ) = lim sup 

h → 0 ,t→ 0 + 

ϕ(x 0 + h + tv ) − ϕ(x 0 + h ) 

t 
, 

and the functional v → ϕ0 ( x 0 ; v ) is subadditive, positively homo- 

geneous, convex and continuous. The Clarke generalized gradient 

∂ϕ( x 0 ) of ϕ at x 0 is 

∂ϕ(x 0 ) = { w ∈ E ∗ | 〈 w, v 〉 ≤ ϕ 

0 (x 0 , v ) , ∀ v ∈ E} , 
which is a nonempty, convex, and weak ∗-compact subset of E ∗. A 

point x 0 ∈ E is said to be a critical point of ϕ, if 0 ∈ ∂ϕ(x 0 ) . In case 
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