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Work by Corron et al. [1,2] represented a chaotic signal as a set of basis functions, and built a matched
filter for the resulting signal. This paper makes use of basis functions without an underlying chaotic sys-
tem. Matched filtering is still possible, allowing communication in noisy environments, but the resulting
signals can be broad band, which is useful for producing signals that are hard to detect. The receiver
design retains the simplicity of Corron et al. [1,2], which is good when weight, power consumption or
bandwidth are constraints on the receiver.
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1. Introduction

Chaotic signals can be broad band and unpredictable, which
makes them attractive for low probability of detection (LPD) com-
munications. In LPD communications, security is gained not by en-
cryption (although encryption is possible) but by the difficulty of
detecting the presence of the signal. A primary requirement for
LPD communications is that the power spectrum of the signal is
broad and flat.

Chaotic signals can have broad power spectra. Unfortunately,
the properties that make chaos useful for LPD communications
also mean that detecting chaotic signals in a noisy communications
channel is difficult. Typically, LPD communications require that the
signal power be the same size or lower than the background noise
power.

There has been much work on the use of chaos for communica-
tion [3-20]. While there are methods for synchronizing two chaotic
systems [21], these methods are sensitive to noise, so most recent
chaotic methods avoid the synchronization by using non coherent
techniques [22]. Recently there has been a resurgence in the field
motivated by applications in mobile communications, low proba-
bility of detection communications, and new techniques such as
orthogonal frequency division multiplexing.

Recent work by Corron et. al. demonstrated a chaotic system for
which an exact analog filter could be designed [1,2]. The design of
the particular chaotic system allowed the chaotic output signal to
be described as a linear combination of basis functions. Encoding
information on the chaotic signal altered the particular linear com-
bination. For these basis functions, an analytically derived matched
filter existed, so encoded information could be recovered from the
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transmitted signal by passing this signal through the matched fil-
ter. Matched filtering is an effective way to communicate in the
presence of noise. The system of Corron et. al. [1,2] could be pro-
duced entirely as an analog circuit, which is a potential advantage
for circuits that needed to operate at high speeds, or for transmit-
ters that needed to be lightweight and use little power.

The system of Corron et. al. [1,2] had some disadvantages for
LPD communications. The output chaotic signal was relatively nar-
row band; broad band signals are better for LPD systems. Allowing
the chaotic system to run freely produced a series of basis func-
tions that overlapped with each other, causing inter-symbol inter-
ference. The system described here seeks to produce a signal with
a broader spectrum and eliminate the inter-symbol interference.

The important concept that is retained from Corron et. al.
[1,2] is the idea of a signal that can be created from a set of basis
functions and filtered by a linear matched filter. The basis func-
tions in [1,2] are related to the output of an unstable oscillator, so
their matched filter used the same oscillator but with the sign of
the damping reversed, so that the oscillator was stable.

The system described here used the concept of basis functions
produced by an unstable oscillator, but the method here is a hybrid
of analog and digital methods. The output of an unstable oscilla-
tor is difficult to reproduce, so this method used a set of N stable
linear oscillators driven by an impulse to produce N impulse wave-
forms. The impulse waveforms were then time reversed to produce
signals that mimicked signals from an unstable oscillator. This time
reversal required digital processing, so the method described here
is not entirely analog.

An additional step in this method is that the set of N time re-
versed waveforms were then rotated to produce a set of N orthog-
onal waveforms. The orthogonal waveforms allowed multiple data
streams to be transmitted in the same bandwidth. The receiver
matched filter used the stable version of the unstable circuits, as
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in the approach of Corron et. al. [1,2], but the stable oscillator cir-
cuits were then followed by a rotation matrix to make a complete
matched filter.

The transmitter in this method requires some digital process-
ing, but the receiver does not. While digital circuits have many ad-
vantages in terms of reproducibility, stability and ease of design,
converting signals between analog and digital adds cost and com-
plexity, and limits the possible signal bandwidth. The transmitter,
while requiring some digital technology, is still relatively simple,
so this method for low probability of detection communication has
some advantages where signal bandwidth, power consumption or
system weight are limiting factors.

2. Linear basis functions

In theory, the linear basis functions could be produced by an
unstable set of oscillators
dX,'
dt

dy;
i = a;((B/a)yi — xi)

= ;Y i=1...N
(1)

where 8 > 0 causes the system to be unstable and «; sets the oscil-
lator frequency. Scaling the damping S by the time scale factor «;
makes all the unstable oscillators have the same bandwidth. There
are N total oscillators.

In practice, in an actual analog circuit, it is difficult to get re-
producible waveforms from an unstable circuit. The alternative ap-
proach used in this work instead uses stable circuits, as described
in Eq. (2).

dt (2)
% =ai(—=(B/ai)yi — xi +d(t))

In Eq. (2), the damping factor 8 <0. The term d(t) is a driving sig-
nal. The driving term is set to d(t =0) =1 and d(t) =0 for t+#£0,
so that the output signal, x(t), is the impulse response of Eq. (2).
The waveforms from the stable oscillators are then reversed in
time to produce linear basis functions

bi(t) = X;(tstep x Ip — ) (3)

where I, is the length of the basis function and tsp is the integra-
tion time step.

The time reversal means that the basis functions must be either
simulated or digitized from a circuit and played back by a digital
to analog convertor. Figure 1 shows a typical set of linear basis
functions b;t from a simulation. The length of the basis functions
was I, = 1000 points, the integration time step was 0.01 s, and the
value of 8 was 0.6.

2.1. Orthogonal basis functions

The linear basis signals b;(t) are not orthogonal, so they must
be transformed into an orthogonal basis. The set of N linear basis
signals of length I, are loaded into an [, x N matrix B;. B; is de-
composed by a singular value decomposition:

B, = USV’ (4)

where U is an [, x N matrix and S is a diagonal N x N matrix of sin-
gular values. The N x N matrix V will be used as a rotation matrix.
The orthogonal basis functions x;(t) are obtained from the linear
basis functions b;(t) by applying the rotation

X =BV (5)

where the individual basis functions x;(t) are the rows of X.
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Fig. 1. Typical linear basis functions b;(t) for 8 = 0.6, tgep = 0.01 and [, = 1000. The
basis functions have been normalized to have a maximum value of 1, and they have
been shifted on the y axis for plotting. From bottom to top, the value of «; is 1, 4,
7 and 10.
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Fig. 2. Orthogonal basis functions x;(t) generated from the linear basis functions
in Fig. 1). The basis functions have been renormalized to have a root mean square
amplitude of 1, and they have been offset in the y axis for plotting. From bottom to
top, the value of «; is 1, 4, 7 and 10.

Fig. 2 shows the orthogonal basis functions x;(t) obtained from
the linear basis functions in Fig. 1. The orthogonal basis functions
are all normalized to have the same root mean square (RMS) am-
plitude.

3. Data encoding

Data will be transmitted by multiplying each of the N orthog-
onal basis functions by +1 and summing. The orthogonality will
be used at the receiver to undo the sum and recover the individ-
ual basis functions. The length of the transmitted signal s¢(t) will
be K x I, where the total number of data bits to be transmitted is
N x K.

The information to be transmitted consists of a set of bi-
nary bits p;(k),i=1...N,k=1...M where p;(k) = +1 The index
i refers to the particular basis function while k indicates the par-
ticular data interval of length [},

To encode the binary information for data interval k, each of the
orthogonal basis functions is multiplied by the corresponding bi-
nary bit p;(k) and summed to produce the transmitted signal s;(k):

N
se(k) = pi(k) xi- (6)

i=1

Fig. 3 is a block diagram of the analog transmitter.
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