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a b s t r a c t 

Two electrically coupled Hindmarsh–Rose neural networks are considered, each including power-law 

long-range dispersive interactions. The whole dynamics of the system is reduced to a set of two cou- 

pled complex Ginzburg–Landau equations. The linear stability analysis of the plane wave solutions brings 

about the existence of two dynamical regimes that predict direct and indirect synchronization of the 

two networks, under the activation of modulational instability. The conditions for the latter to develop 

are discussed and used to observe numerically the synchronized longtime dynamics of action potentials, 

under the effect of both long-range intra-coupling and electrical inter-coupling parameters. Mainly, the 

synchronization criterion depends on the plane wave amplitudes and for some of their values, perfect 

and partial inter-network synchronization phenomena are observed. It is also found that indirect syn- 

chronization between adjacent networks requires local synchronization among neurons of the same fiber. 

This is discussed based on some further formulation of the synchronization error, additionally to the time 

series of action potentials. Some spatiotemporal behaviors of the corresponding bursts of spikes are also 

discussed using coupling parameters. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Neural networks are favorable to cooperative behaviors, nec- 

essary for the efficient processing and transmission of informa- 

tion across the nervous system [1,2] . In fact, numerous operations 

are executed simultaneously in the brain due to the mechanism 

of synchronization of neural activities through phase locking and 

auto-generated oscillations and wave patterns [3] . Especially, wave 

formation and synchronization have been addressed intensively by 

several authors in order to unmask the hidden underlying mecha- 

nisms, in the presence of many factors such as time-delays [4,5] , 

coupling strengths [1,6–8] and noise [9] . Temporal synchroniza- 

tion activities are of great importance in neural binding and in- 

formation processing in the brain. Specifically, several brain disor- 

ders such as schizophrenia and Alzheimer’s disease are closely re- 

lated to abnormal synchronization. Mindful of the various factors 

∗ Corresponding author at: Laboratory of Biophysics, Department of Physics, Fac- 

ulty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon. 

E-mail addresses: etemearmand@yahoo.fr (A.S. Etémé), conrad@aims.ac.za , 

tabic@biust.ac.bw (C.B. Tabi), mohdoufr@yahoo.fr (A. Mohamadou). 

that may enhance synchronized states in coupled oscillating enti- 

ties, some general aspects of phase synchronization among oscilla- 

tors through time-shifted common input were addressed recently 

[10] . Equally, effects of partial time-delay on phase synchroniza- 

tion in Watts–Strogatz small-world neuronal networks was stud- 

ied, including its impact on the mean-firing rate of neurons [11] . 

In the process, it is nowadays well-established that neurons in net- 

works may be coupled either chemically or electrically. Chemical 

synapses are responsible for the creation of circuits within the cen- 

tral nervous system, which portrays the complexity of brain con- 

nectivity that goes beyond the classical nearest-neighbor coupling 

between adjacent neurons. The neurotransmitter that is in fact re- 

leased by a synapse may diffuse away from its target, therefore 

activating other synapses of the networks. In this category, one 

finds, for example, neurons in the brain cortex. Contrary to chem- 

ical synapses, electrical synapses, or gap junctions, are not due 

to the opening of the ion channels by chemical transmitters, but 

rather rely on direct coupling between neurons. They abound in 

the nervous system and may be found in the retina, the reticu- 

lar nucleus of the thalamus, the hippocampus and the neocortex 

[12] . Chemical synapses being the main mode of communication 
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Fig. 1. Schematic diagram of the coupled networks N1 and N2. (1) indicates the intra-coupling among neurons in the same network, while (2) picture the inter-network 

coupling between the two networks N1 and N2 . In individual networks, any neuron n may interact with the rest of the neurons in the lattice. In Eqs. (1), neuron N1 

corresponds to ν = 1 and N2 to ν = 2 . 

between neurons, electrical synapses are favorable to synchronous 

behaviors in and between neural networks [13] . Otherwise, adja- 

cent networks may directly communicate thanks to the direct elec- 

tric connection between their elements. This mechanism might be 

useful in the process of recruiting damaged or dead neurons into 

conduction, and may even lead to some synchronous behaviors as 

recently reported by Maina et al. [14] . A simplified Hindmarsh–

Rose (HR) model [15,16] was recently proposed, where global cou- 

pling was introduced in the form of power-law long-range (LR) in- 

teractions [17] . It was shown that under strong LR coupling, it was 

possible to observe disordered spatiotemporal patterns, therefore 

confirming the idea that strong interaction among bursting neu- 

rons may affect their synchronizability. In this purpose, the theory 

of modulational instability (MI) was applied, and regions of param- 

eters for such behaviors to be observed was determined. Here, mo- 

tivated by some experimental results suggesting that the number 

of interconnected neurons may be too large in the brain and lead 

to some inter-networks couplings [18–20] , with inherent complex 

oscillating and bursting behaviors, we intend to explore the coop- 

erative effects between electrically inter-coupled HR networks with 

power-law LR intra-coupling among neurons belonging to the indi- 

vidual networks (see Fig. 1 ). We show in fact that the competitive 

effects between the two kinds of coupling may bring about direct 

and indirect synchronous behaviors between the two networks. 

MI is one of the direct mechanisms leading to the formation of 

wave patterns under the permanent competition between nonlin- 

ear and dispersive effects [21,22] . It has been addressed in a num- 

ber of systems related to charge and energy transport in DNA and 

proteins [23–26] , blood wave propagation in large vessels [27] , cal- 

cium propagation in coupled cells [28,29] and nerve influx in neu- 

ral networks [14,17,30] , just to name a few. In the case of neural 

networks, it was also found that some events of synchronization 

were possible, but this could not be predicted analytically, via the 

linear stability analysis of MI. However, it was shown that soli- 

tons and nonlinear waves were suitable describing nerve impulses, 

with real application to one- and two-dimensional diffusive cou- 

pling [30] . Here, we establish a relationship between the formation 

of self-modulated waves and their synchronization using MI, and 

we show a strong correlation between analytical and numerical 

results, both for direct and indirect synchronization. It should be 

noticed that the problem of self-modulation in nonlinear science 

is straightforwardly related to phase and amplitude modulation. In 

neural network, however, phase synchronization is more appreci- 

ated than amplitude or complete synchronization. The subsequent 

solutions and collective behaviors may then be given in the form 

of asymptotic expansion, and an equation giving the modulation of 

the first-order amplitude may be derived. In our context, given the 

dissipative character of the studied system, the complex Ginzburg–

Landau (CGL) equation is the simplest form of such amplitude 

equation as it is shown in this work. The rest of the paper is there- 

fore articulated as follows: in Section 2 , we introduce the model 

describing the dynamics of the two interacting HR networks, and 

we show, via the quasi-discrete approximation, that the dynamics 

of the whole system may be fully described by a set of two cou- 

pled complex Ginzburg–Landau (CCGL) equations. In Section 3 , the 

theory of MI is used to find regions of parameter where trains of 

waves are expected, along with the condition for the dynamics of 

the two nerve fibers to be synchronized. In that direction, we find 

the condition for direct synchronization and we also propose the 

condition for indirect synchronization. In Section 4 , the numeri- 

cal verification of these predictions is performed, and one insists 

on the reliability of the analytical results. The synchronization be- 

tween the two fibers is investigated via the calculation of errors, 

along with its response to intra- and inter-network interactions. In 

the case of indirect synchronization, a supplementary condition is 

used to detect synchronous states. In Section 5 , some concluding 

remarks are given. 

2. The coupled HR model and mathematical expansion 

2.1. Model 

HR neural networks are mainly described by a system of three 

nonlinear ordinary differential equations for the dimensionless dy- 

namical variables x ( t ), y ( t ), and z ( t ), where x ( t ) represents the 

membrane potential, y ( t ) and z ( t ) refer to the rate of ion trans- 

port through fast and slow ion channels respectively [15,16] . Here 

we explore a modified HR model in which two discrete networks (
x (1) 

n (t) , y (1) 
n (t ) , z (1) 

n (t ) 
)

and 

(
x (2) 

n (t) , y (2) 
n (t ) , z (2) 

n (t ) 
)
, with power- 

law intra-LR diffusive interactions [17,31] , coupled via electrical 

synapses [32] , as schematized in Fig. 1 . The corresponding system 



Download English Version:

https://daneshyari.com/en/article/5499527

Download Persian Version:

https://daneshyari.com/article/5499527

Daneshyari.com

https://daneshyari.com/en/article/5499527
https://daneshyari.com/article/5499527
https://daneshyari.com

