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a b s t r a c t 

As we all known, there are many kinds of strains for a disease. However, the transmission dynamics of 

such disease is far from being well understood. In this paper, we established a SIS multi-strain model 

on scale-free network and the dynamics of multi-strain disease was studied by mean-field method. It is 

proved that the disease-free equilibrium is globally asymptotically stable when the basic reproduction 

number R 0 < 1. It is proved that the equilibrium point with the largest basic reproduction number is 

globally stable. Our results indicate that competitive exclusion principle also holds for the disease with 

multiple strains. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Infectious diseases, including humans, animals, plant infectious 

diseases, especially human infectious diseases, are the most impor- 

tant biosecurity issues. Infectious diseases are still the first cause of 

global death. In China, infectious diseases are still a serious threat 

to people’s health and national security. According to the World 

Health Organization statistics, in the past 20 years there have been 

at least 30 kinds of new infectious diseases. In addition to SARS, 

some new infectious diseases such as AIDS (HIV / AIDS, since 1981, 

the United States reported the disease since the first time, as of 

January 1992, the global health report to the World Health Orga- 

nization reported a total of 189 countries and regions, In 2002 the 

world a total of about 70 million AIDS, killing 20 million people, 

each year more than 560 million people infected with AIDS [1–3] . 

In addition, H1N1, H7N9, Ebola, dengue and other infectious dis- 

eases are still in some parts of the country, some countries and 

regions in the world epidemic or outbreak [4–9] . In recent years, 

the spread of disease on complex networks has been studied ex- 

tensively, and has been a wealth of research results [10] . Complex 

network is composed of a large number of nodes and nodes be- 

tween the edge, it has the topology and complexity of the dynam- 

ics of infectious diseases can be described in the process of more 

refined. There are already many studies on disease in the scale- 

free network [11–15] . In 2001, Pastor-Satorras et al. used the mean 

field theory to study the SIS epidemic model on the general net- 
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work and applied it to the scale-free network. It was proved that 

the scale-free network had no threshold under the appropriate pa- 

rameters, which means even if only very few individuals affected 

by the disease, the disease can also exist in the network for a long 

time [14] . 

In the past, most of the research work on mathematical mod- 

eling and research in infectious dynamics has assumed that only 

pathogens (viruses or bacteria) that cause infectious diseases have 

only one form of expression [10] . However, many infectious dis- 

eases are not caused by a single strain. For example, influenza and 

Neisseria gonorrhoeae, its pathogens have many forms, and there 

is a high degree of variability, according to media reports, there 

have been mutated strains. In addition, there are many genetic va- 

rieties of HIV, such as HIV-1 and HIV-2. Strains compete with each 

other, common infection, and mutation will affect the spread of in- 

fectious diseases [16] . So it is clear that it is necessary to clarify the 

mechanism of transmission of multiple strains of disease, which is 

of great significance to the study of the spread and epidemic of 

diseases. 

In recent years, we have studied a lot about the propagation 

dynamics of multiple strains on the network. For example, in 

2005, Newman studied the propagation threshold of two compet- 

ing strains on the network by the bond percolation approach. It 

also shows that the two strains can coexist under certain condi- 

tions [17] . In 2011, Wu et al. [18] , established a perfectly compet- 

itive two-strain SIS model on a scale-free network, demonstrating 

the existence of two strains competing thresholds on a finite net- 

work and an infinite network. Two strains of disease have been 

studied a lot of articles [17–25] , but the actual situation in most of 

the disease has three or even more strains caused. In this paper, 
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we use the method of mean-field to study the epidemic threshold 

of three competitive strains. 

The paper is organized as follows: in Section 2 , we develop a 

SIS model of three competing stain. In Section 3 , we calculate the 

basic regeneration number and study the existence and stability of 

equilibrium points. In Section 4 , we present numerical simulations 

to confirmed our theoretical predictions in Section 3 . In Section 5 , 

we have made some summaries and discussions. 

2. Dynamical model 

In order to carry out our research, we give the following two 

main assumptions. 

(i) In this article, we studied three strains, which we call strain 

1, 2 and strain 3. We used SIS dynamics to study each strain sepa- 

rately. Each node on the network represents a person, and we can 

divide these people into four states: susceptible, infected by strain 

1, infected by strain 2, and infected by strain 3. A susceptible per- 

son can be infected by strain 1 with probability β1 and can recover 

with probability γ 1 . Similarly, β2 and β3 are the infection rates of 

strain 2 and strain 3, and their recovery rate is γ 2 and γ 3 . And 

the three strains compete with each other. 

(ii) In this paper, we study the spread of disease on scale-free 

networks. In this scale-free network, P ( k ) represents the probability 

of a randomly chosen node having a degree k . We assume that the 

network is uncorrelated. And P ( k ) follows power-law distribution, 

P (k ) ∼ k −2 −γ with 0 < γ ≤ 1. 

In our uncorrelated network, the N ( k ) represents the num- 

ber of nodes with degree k . Then the number of four states at 

time t is represented as S k ( t ), I 1 k ( t ), I 2 k ( t ), I 3 k ( t ), and s k ( t ), ρ1 k ( t ), 

ρ2 k ( t ), ρ3 k ( t ), as their densities respectively. Obviously s k (t) = 

S k (t) / N(k ) , ρ1 k (t) = I 1 k (t) / N(k ) , ρ2 k (t) = I 2 k (t) / N(k ) , ρ2 k (t) = 

I 3 k (t) / N(k ) . Then we give the following equation: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

ds k (t) / dt = − β1 ks k (t) θ1 (t) − β2 ks k (t) θ2 (t) − β3 ks k (t) θ3 (t) 

+ γ1 ρ1 k (t) + γ2 ρ2 k (t) + γ3 ρ3 k (t) , 

dρ1 k (t) / dt = β1 ks k (t) θ1 (t) − γ1 ρ1 k (t) , 

dρ2 k (t) / dt = β2 ks k (t) θ2 (t) − γ2 ρ2 k (t) , 

dρ3 k (t) / dt = β3 ks k (t) θ3 (t) − γ3 ρ3 k (t) . 

(2.1) 

Among them 

� = { (s 1 , ρ11 , ρ21 , ρ31 , . . . , s M 

, ρ1 M 

, ρ2 M 

, ρ3 M 

) , 

ρ1 k + ρ2 k + ρ3 k ≤ 1 , 1 ≤ k ≤ M} . 
M is the maximum number of contacts for each individual. � is 
a positive invariant set. In steady state, s k (t) + ρ1 k (t) + ρ2 k (t) + 

ρ3 k (t) = 1 . The system ( 2.1 ) can be converted to that ⎧ ⎨ 

⎩ 

dρ1 k (t) / dt = β1 k (1 − ρ1 k (t) − ρ2 k (t) − ρ3 k (t )) θ1 (t ) − γ1 ρ1 k (t) , 

dρ2 k (t) / dt = β2 k (1 − ρ1 k (t) − ρ2 k (t) − ρ3 k (t )) θ2 (t ) − γ2 ρ2 k (t) , 

dρ3 k (t) / dt = β3 k (1 − ρ1 k (t) − ρ2 k (t) − ρ3 k (t )) θ3 (t ) − γ3 ρ3 k (t) . 

(2.2) 

And 

� = { (ρ11 , ρ21 , ρ31 , . . . , ρ1 M 

, ρ2 M 

, ρ3 M 

) , 

ρ1 k + ρ2 k + ρ3 k ≤ 1 , 1 ≤ k ≤ M} . 
Where θ1 , θ2 , θ3 represent the probability that each susceptible 

individual of degree k is in contact with strain 1, strain 2, and 

strain 3, respectively. It can be expressed as 

θ1 = 

∑ 

k ′ 
P (k ′ | k ) ρ1 k ′ / < k > . 

In the unrelated network, the conditional probability p ( k ′ / k ) of a 

node with a degree of k randomly contacts with a node degree k ′ 

does not depend on k , which is proportional to k ′ p ( k ′ ). That is to 

say 

p(k ′ /k ) = k ′ p(k ′ ) / < k > . 

Then 

θ1 = 

∑ M 

k ′ =1 
k ′ p(k ′ ) ρ1 k ′ / < k > . 

Similarly available 

θ2 = 

∑ M 

k ′ =1 
k ′ p(k ′ ) ρ2 k ′ / < k > , θ3 = 

∑ M 

k ′ =1 
k ′ p(k ′ ) ρ3 k ′ / < k > . 

3. Analysis of the model 

3.1. The stability of disease-free equilibrium 

System ( 2.2 ) has a disease-free equilibrium E 0 = ( 0 , · · · , 0 ︸ ︷︷ ︸ 
3 M 

) . We 

use the next generation matrix method [26] to calculate its thresh- 

old. We can get that 

F = 

( 

F 11 O O 

O F 22 O 

O O F 33 

) 

3 M× 3 M 

, 

V = 

( 

V 11 O O 

O V 22 O 

O O V 33 

) 

3 M× 3 M 

, 

where F is non-negative, and V is a non-singular M -matrix. And 

F 11 = β1 

⎛ 

⎝ 

⎛ 

⎝ 

1 
2 
· · ·
M 

⎞ 

⎠ 

(
1 × P(1) 2 × P(2) · · · M × P(M) 

) ⎞ 

⎠ / < k > , 

F 22 = β2 

⎛ 

⎝ 

⎛ 

⎝ 

1 
2 
· · ·
M 

⎞ 

⎠ 

(
1 × P(1) 2 × P(2) · · · M × P(M) 

) ⎞ 

⎠ / < k > , 

F 33 = β3 

⎛ 

⎝ 

⎛ 

⎝ 

1 
2 
· · ·
M 

⎞ 

⎠ 

(
1 × P(1) 2 × P(2) · · · M × P(M) 

) ⎞ 

⎠ / < k > , 

and 

V 11 = γ1 I, V 22 = γ2 I, V 33 = γ3 I. 

I represents the M -dimensional unit matrix, and the O represents 

the M -dimensional zero matrix. Then we can get the basic regener- 

ation number of the model, R 0 = ρ(F V −1 ) , where ρ( A ) is defined 

as the spectral radius of the matrix A . We can get 

R 0 = max { R 1 , R 2 , R 3 } , 
where 

R 1 = β1 < k 2 > / γ1 < k > , R 2 = β2 < k 2 > / γ2 < k > , 

R 3 = β3 < k 2 > / γ3 < k > . 

Theorem 1. The disease-free equilibrium point of the system ( 2.2 ) is 

locally asymptotically stable, when R 0 < 1 . 

Proof. Assume that the Jacobian matrix of system ( 2.2 ) at disease- 

free equilibrium is as follows: 

A = 

( 

A 1 O O 

O A 2 O 

O O A 3 

) 

3 M× 3 M 

. 

where 

(A 1 ) kk ′ = −γ1 δkk ′ + β1 kp(k ′ ) / < k >, 
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