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a b s t r a c t 

Pair approximation model is an effective tool to study epidemic spread on complex networks. It can 

more accurately capture the effects of network structure on the spreading process. That then helps us 

grasp the spreading laws of epidemics on networks and further make effective prevention and control 

measures. Vaccination, an important measure for prevention and control of infectious disease, has made 

great achievements in public health. In this paper we study vaccination strategies with the help of pair 

approximation epidemic model with demographics. We firstly introduce constant vaccination into SIR 

pair approximation model. The reproduction number and endemic prevalence of disease are investigated, 

the critical vaccination rate which can help to control disease transmission is also given. Considering 

the restriction of financial resources, it is necessary to control disease transmission simultaneously to 

reduce vaccination cost. To this end, we further investigate optimal vaccination of SIR pair approximation 

model by use of optimal control theory. The existence of optimal solution is established and optimality 

system is derived. Finally, a series of stochastic simulations on different initial networks are performed to 

demonstrate our theoretical models and some numerical simulations are provided to observe and analyze 

different vaccination strategies. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

As indicated by epidemic history, the spread of infectious 

disease—a major threat to the health of human being—has taken 

the lives of millions of people [4] . Therefore, it is crucial to under- 

stand infectious diseases and to develop appropriate control strate- 

gies. In the paper [17] Kermack and McKendirck established the 

susceptible-infected-recovered (SIR) framework which forms the 

basis of mathematical models. After their pioneering work, the use 

of mathematical tools to study and understand the spread of in- 

fectious disease is an established and fruitful area of research (see, 

e.g., [16] ). However, the early models do not consider realistic hu- 

man behaviors and interactions. It has long been acknowledged 

that the connectivity pattern between individuals in human be- 

ings is an important factor in determining the properties of a dis- 

ease spreading process. Using networks to model disease trans- 

mission, where individuals are represented as nodes in a network 
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and the connectivity between individuals is represented by links 

between the nodes, allow us to capture a high level of detail of 

many realistic processes and lead to more accurate models, es- 

pecially when compare to classical compartmental models which 

usually operate on the assumption of homogeneous random mix- 

ing. The works [15,28–30] done by Pastor–Satorras, Vespignani and 

Newman et al. are the famous representative researches in this 

area, and they present detailed analytical and numerical studies on 

some epidemic models in the framework of complex networks. 

Pair approximation model, one of the network-based epidemic 

models, offers an explicit treatment of the epidemic process both 

at node and link level and hence has led to a much better un- 

derstanding of the role of contact heterogeneity, assortativity and 

clustering of contacts. Up to now extensive investigations on pair 

approximation model have been performed. Keeling [14] built pair 

approximation model of susceptible-infected-recovered (SIR) epi- 

demic with cluster and discussed the basic reproduction num- 

ber of the model. Bauch [3] established pair approximation model 

of susceptible-infected-susceptible (SIS) epidemic and analyzed its 

basic reproduction number, analysis of global dynamic for this 

model was provided in [25] . Furthermore, to reveal the influ- 
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ences of birth and death of individuals on disease spread and the 

topological evolution of the underlying networks, we studied an 

SIS pair approximation model with demographics [26] based on 

Markov chain. Recently, being different from the previous pair ap- 

proximation models based on Markovian epidemics, a series of pair 

approximation models are extended to non-Markovian epidemics 

(see, e.g., [18,36,37] ). 

Understanding the spread of infectious disease is one of the 

motivations to explore mathematical models. The other and per- 

haps more important purpose is to develop effective strategies for 

disease prevention and control. Measures for prevention and con- 

trol of infectious disease include vaccination, treatment, quaran- 

tine, isolation, and prophylaxis (see [27] ). Vaccination is one of the 

greatest achievements of public health. Research and practice re- 

sults show that if a large majority of people are vaccinated, it is 

much more difficult for an outbreak of disease to occur, this is so- 

called herd immunity. Typical cases are that vaccination has led to 

the complete eradication of smallpox worldwide, and a near erad- 

ication of polio. 

Mathematical models including vaccination aid in deciding on a 

vaccination strategy and in determining changes in qualitative be- 

havior that could result from such a control measure. There are 

two points in which vaccination models can differ from one an- 

other. The first is that some models assume that vaccination is 

equivalent to going through the disease and treat vaccinated in- 

dividuals as recovered individuals (see, e.g., [21,38] ). Thus a recov- 

ered compartment model can include vaccinated individuals with- 

out an additional class. Other models assume that vaccinated indi- 

viduals have to be separated into a vaccinated compartment (see, 

e.g., [2,8,11] ). In addition, epidemic models with vaccination on 

complex networks also have been extensively studied, one may re- 

fer to [7,9,31–33,40,41] for more details. 

What vaccination models in previous literatures have in com- 

mon is that individuals access to vaccines with a fixed rate, that 

is to say, control strategies are considered to be constant in time. 

But in reality, control strategies are variable in time. On the other 

hand, these models focused on identifying the mechanisms respon- 

sible for epidemics but had taken little into account economic con- 

straints in analyzing control strategies. Actually, there is a pressing 

need to optimize investments for vaccination cost as financial re- 

sources are limited. An ideal control strategies should strike a bal- 

ance between epidemiological factor and economic factor. To this 

end, optimal control method has been used to describe the op- 

timal vaccination policy as function of the vaccination cost and 

epidemic dynamics and severity. So far a number of studies in 

the literature have been made to study the role of vaccination on 

the spread of infectious disease and economic cost by using opti- 

mal control theory (see for example [10,13,20,22,23,42] , and mono- 

graphs [1,24,39] and the references therein for detailed descrip- 

tion). In these studies the application of optimal control method is 

restricted to traditional epidemic models, while connectivity pat- 

terns between individuals are ignored. In order to make up for 

the lack of theoretical research area and develop better vaccina- 

tion strategy in conformity with practical situation, it is necessary 

to combine optimal control method with network-based epidemic 

models. However, until now, only a few literatures contribute to 

this area. For example, Preciado et al. [34,35] analyzed optimal vac- 

cine allocation for control of SIS, SEIV networked epidemic models. 

Chen and Sun [5,6] investigated optimal vaccination and treatment 

of an SIRS epidemic model on heterogeneous networks. 

To control the spread of disease as well as reduce vaccination 

cost, in this paper we concern vaccination strategies including con- 

stant vaccination and optimal vaccination of an SIR pair approxi- 

mation model with demographics on complex networks. Pair ap- 

proximation model with demographics will bring some advantages 

for this research. Firstly, pair approximation model is succinct and 

intuitive, meanwhile can better embody some features of com- 

plex networks. Secondly, pair approximation model involves differ- 

ential equation about the number of susceptible-infected pairs, it 

is the links between the susceptible and infected that determine 

the spread of disease on networks, thus more efficiently control 

strategies may be proposed via reduce the number of susceptible- 

infected tuples. Finally, the demographics, or rather the birth and 

death of individuals, greatly affects the network structure, thereby, 

influences the spread of disease. Coupling the demographics to a 

pair approximation model is more accordant with social network. 

The rest of the paper is organized as follows. In Section 2 we 

introduce constant vaccination in SIR pair approximation model 

with demographics. Based on that, the basic reproduction number 

and endemic prevalence of disease are investigated. Furthermore, 

the critical vaccination level is also presented to prevent infectious 

disease. In Section 3 optimal control theory is applied to deter- 

mine the “best” vaccination regime that will minimize the preva- 

lence and the cost of applying vaccination. We discuss the exis- 

tence of solution for optimal control problem and give optimality 

system with the help of Pontryagin minimum principle. Simula- 

tions are provided in Section 4 . For constant vaccination case, we 

carry out numerical simulations and stochastic simulations starting 

with Erdös-Rényi (ER) random network and Barabási–Albert (BA) 

scale-free network. For optimal vaccination case, numerical simu- 

lations are implemented and the influences of vaccination cost on 

optimal control are investigated. A brief conclusion and some dis- 

cussions on future research are given in Section 5 . 

2. Model with constant vaccination 

Consider a network representing a population with an average 

degree n and a constant number of nodes N , i.e., the birth rate is 

equal to the death rate. Each node on networks may be in one 

of three possible states: susceptible ( S ), infected ( I ), and recovered 

( R ). The number of nodes in state S, I and R at time t are rep- 

resented by [ S ]( t ), [ I ]( t ) and [ R ]( t ) respectively, with N = [ S](t) + 

[ I](t) + [ R ](t) . In addition, the pair [ XY ]( t ) stands for the number of 

ordered X − Y edges (pairs) linking a node in state X with a node 

in state Y on networks at time t , where X, Y ∈ { S, I, R }. Note that 

[ XX ]( t ) or [ YY ]( t ) counts twice the number of real pairs at time t . It 

therefore follows that [ SS] + [ I I ] + [ RR ] + 2[ SI] + 2[ SR ] + 2[ IR ] = nN. 

Analogously, the triple [ XYZ ]( t ) represents the number of triple 

X − Y − Z at time t and [ XYX ]( t ) counts twice the number of real 

triples, where X, Y, Z ∈ { S, I, R }. 

About spreading mechanism of SIR epidemics with demograph- 

ics on networks, there are the following events occurring concur- 

rently at each time step �t (see [26] ). (i) Birth event: each old 

node with the birth rate τ bears a new node which is susceptible 

and emits n 0 edges. Each of the n 0 edges is randomly connected 

to an old infectious node with probability [ I ]/ N , old susceptible 

node with probability [ S ]/ N and old recovered node with probabil- 

ity [ R ]/ N . (ii) Death event: each node, irrespective of its state, will 

die at the death rate τ and all of the edges attached to it are re- 

moved. (iii) Transmission event: each susceptible node is infected 

with the transmission rate β per S − I link. (iv) Recovery event: 

each infected node recovers with rate γ . 

With regard to vaccination, we assume that (i) the vaccination 

is perfect, namely there is no immune failure individual, (ii) vac- 

cination is available and equiprobable for susceptible individuals, 

those who have vaccinated will be treated as recovered individu- 

als, (iii) the vaccine confers life-long protection on susceptible in- 

dividuals. 

Based on the above notations and assumptions, we can get a 

system governed by differential equations for the evolution of the 
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