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a b s t r a c t 

This paper studies the problem of delay-dependent passivity for uncertain neural networks (UNNs) with 

discrete and distributed delays. Without considering free weighting matrices and multiple integral terms, 

which may cause more numbers of linear matrix inequalities (LMIs) and scalar decision variables. By 

constructing a suitable Lyapunov–Krasovskii functional (LKF) and combining with the reciprocally convex 

approach, some sufficient conditions are established in terms of LMIs. Compared with existing results, 

the derived criteria are more effective due to the application of delay partitioning approach which takes 

a full consideration of all available information in various delay intervals. Two simulation examples are 

given to illustrate the effectiveness of the proposed method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

During the past decades, neural networks (NNs) have been 

widely applied to static image processing, pattern recognition, 

fixed-point computation, associative memory, combinatorial opti- 

mization, etc [4–10] . Meanwhile, due to the finite speed of infor- 

mation processing and inherent communication time of neurons, 

time delay occurs commonly in many NNs, it may lead to oscilla- 

tion, divergence, and even instability of NNs. Thus the stability of 

delayed NNs become an important issue. So far, the stability crite- 

ria of delayed NNs can be classified into two categories, that is, 

delay-independent ones [1–3] and delay-dependent ones [4–40] . 

The delay-independent stability conditions are usually more con- 

servative than delay-dependent conditions since they include less 

information concerning the time delay, especially when the time 

delay is sufficiently small. For the delay-dependent case, we can 

choose an appropriate LKF for obtaining less conservative stability 

results. Hence, various improved schemes have been proposed to 

reduce conservatism in recent years. These include free-weighting 

matrix [11,12] , augmented LKF [13] and so on. However, it is still 

hard to reduce the conservatism by further employing the identical 

LKFs. Recently, the delay-partitioning method has been proposed 
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to investigate the stability of delayed NNs, which significantly re- 

duce the conservatism of derived stability criteria in [9,12,14,23,33] . 

For example, in [9] , by dividing the delay interval [0,d] into some 

subintervals with the same size, an improved stability condition for 

delayed NNs was obtained. Further, the authors in [14] investigated 

the delay-dependent stability issue for delayed NNs by using inde- 

pendent upper bounds of the delay derivative in each subinterval. 

In addition, in [33] , the stability problem for a class of NNs with 

multiple time-varying delays was addressed by delay-partitioning 

and reciprocally convex approaches. However, it is worth noting 

that these methods have common shortcomings. For one thing, the 

relationship between time-varying delay and each subinterval is 

completely neglected. On the other hand, some useful information 

about neuron activation functions are also not sufficiently consid- 

ered. 

Moreover, it is well known that the dissipative theory plays 

an important role in the stability analysis of dynamical system, 

nonlinear control and other areas. Particularly, passivity as a spe- 

cial case of dissipative, which frequently used in control systems 

to prove the stability of the system. The passivity theory is inti- 

mately related to the circuit analysis and has received much atten- 

tion from the control areas since 1970s. It has also been extensively 

applied in many physical systems such as signal processing, fuzzy 

control, sliding mode control [15] and networked control [16] . On 

the other hand, due to modelling error, external perturbation and 
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parameter fluctuation, the NNs certainly involve some uncertain- 

ties such as perturbations and component variations, which will 

degrade the quality of system. Hence, in [27–30,33,36] , the authors 

considered the problem of delay-dependent passivity for uncertain 

continuous-time NNs with both discrete and distributed delays. 

Further, a new integral inequality based on Wirtinger’s inequality 

was proposed in [20] , which gives a tighter upper bound. There- 

fore, it is necessary and meaningful to study the issue of delay- 

dependent passivity for UNNs with both discrete and distributed 

delays. 

Motivated by the above considerations, in this paper, the prob- 

lem of delay-dependent passivity for UNNs with both discrete and 

distributed delays is studied. Without considering free weighting 

matrices and multiple integral terms, which may cause more num- 

bers of LMIs and scalar decision variables. By constructing a suit- 

able Lyapunov–Krasovskii functional and combining with the recip- 

rocally convex approach, some sufficient conditions are established 

in terms of LMIs. Compared with existing results, the derived cri- 

teria are more effective due to the application of delay partitioning 

approach which takes a full consideration of the all available infor- 

mation in various delay intervals. Finally, two simulation examples 

are given to illustrate the effectiveness of the proposed method. 

Notation: Throughout this paper, the superscript T denotes the 

transposition and the notation X ≥ Y ( X > Y ), where X and Y 

are symmetric matrices, means that X − Y is positive semi-definite 

(positive definite). R n and R n × n denote n-dimensional Euclidean 

spaces and the set of all n × n real matrices, respectively. I is the 

identity matrix. The notation 

∗ always denotes the symmetric block 

in one symmetric matrix. Matrices, if not explicitly stated, are as- 

sumed to have appropriate dimensions. 

2. Problem statement and preliminaries 

Consider the following uncertain neural network with discrete 

and distributed delays: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ x (t) = − (A + �A (t )) x (t ) + (W + �W (t )) g(x (t )) 

+ (W 1 + �W 1 (t)) g(x (t − τ (t))) 

+ (W 2 + �W 2 (t)) 

∫ t 

t −τ (t ) 
g(x (s )) ds + u (t) 

y (t) = g(x (t)) 

x (t) = φ(t) , t ∈ [ −d, 0] . 

(1) 

where x (t) = [ x 1 (t) , x 2 (t ) , . . . , x n (t )] T is the neuron state vector, 

u (t) = [ u 1 (t) , u 2 (t ) , · · · , u n (t )] T ∈ R n is the input vector, g(x (t)) = 

[ g 1 (x 1 (t)) , g 2 (x 2 (t)) , . . . , g n (x n (t))] T denotes the neuron activation 

function, A = diag(a 1 , a 2 , . . . , a n ) > 0 is a positive diagonal matrix, 

W = (b i j ) n ×n , W 1 = (c i j ) n ×n and W 2 = (d i j ) n ×n are the interconnec- 

tion matrices representing the weighting coefficients of neurons 

and y ( t ) is the output vectors. The continuous function φ( t ) is 

the initial condition. �A ( t ), �W ( t ), �W 1 ( t ) and �W 2 ( t ) are un- 

known matrices that represent the time-varying parameter uncer- 

tainties and the delay τ ( t ) is a time-varying function with 0 ≤
τ (t) ≤ d, ˙ τ (t) ≤ μ. �A ( t ), �W ( t ), �W 1 ( t ) and �W 2 ( t ) are assumed 

to be of the form: 

[�A (t) �W (t) �W 1 (t) �W 2 (t)] 

= [ G 1 F 1 (t) E 1 G 2 F 2 (t) E 2 G 3 F 3 (t) E 3 G 4 F 4 (t) E 4 ] (2) 

where G i and E i (i = 1 , 2 , 3 , 4) are known real constant matrices 

and F i ( t ) (i = 1 , 2 , 3 , 4) are unknown time-varying matrix functions 

satisfying 

F T (t) F (t) ≤ I, ∀ t ≥ 0 . (3) 

It is assumed that all elements F i ( t ) are Lebesque measurable. The 

uncertain matrices �A ( t ), �W ( t ), �W 1 ( t ) and �W 2 ( t ) are said to 

be admissible if (2) and (3) hold. 

For convenience, system (1) can be rewritten as ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ x (t) = − A (t) x (t) + W (t) g(x (t)) + W 1 (t) g(x (t − τ (t))) 

+ 

∫ t 

t −τ (t ) 
g(x (s )) ds + u (t) 

y (t) = g(x (t)) 

x (t) = φ(t) , t ∈ [ −d, 0] . 

(4) 

where A (t) = A + �A (t ) , W (t ) = W + �W (t ) , W 1 (t ) = W 1 + 

�W 1 (t) , W 2 (t) = W 2 + �W 2 (t) . 

Throughout this paper, we suppose that the activation function 

satisfies the following assumption. 

Assumption 2.1. [17] The neuron activation function g i ( ·) in (1) is 

continuous and satisfies 

k −
i 

≤ g i (α1 ) − g i (α2 ) 

α1 − α2 

≤ k + 
i 
, α1 , α2 ∈ R, α1 � = α2 , 

f or i = 1 , 2 , · · · , n (5) 

Where k −
i 
, k + 

i 
(i = 1 , 2 , · · ·, n ) are known real scalars, and g i (0) = 

0 , i = 1 , 2 , · · · , n. From (5) , if α2 = 0 , then we have k −
i 

≤ g i (x i (t)) 
x i (t) 

≤
k + 

i 
, α � = 0 . Thus, under this assumption, the following inequality 

holds for any diagonal matrix H > 0: 

x T (t) K HK x (t) − g T (x (t )) Hg(x (t )) ≥ 0 , 

Where K = diag(k 1 , k 2 , . . . , k n ) , k i = max (| k −
i 
| , | k i | + ) . 

To end this section, we introduce the following definition and 

lemmas, which will play an important role in the proof of the main 

results. 

Definition 2.1. [22] The neural network (4) is said to be passive if 

there exists a scalar γ > 0 such that for all t f ≥ 0 

2 

∫ t f 

0 

y (s ) T u (s ) ds ≥ −γ

∫ t f 

0 

u (s ) T u (s ) ds (6) 

under the zero initial condition. 

Lemma 2.1. [20] . For any a given matrix Q > 0, the following in- 

equality holds for continuously differentiable function x ( t ) in [ a, b ] ∈ 

R n : 

−(b − a ) 

∫ b 

a 

˙ x T (s ) Q 

˙ x (s ) ds ≤ −[ x (b) − x (a )] T Q[ x (b) − x (a )] 

−3 ξ (t) T Qξ (t) 

where ξ (t) = x (b) + x (a ) − (2 / (b − a )) 
∫ b 

a x (s ) ds . 

Lemma 2.2. [26] . For any vectors x 1 , x 2 , matrix S and symmetric ma- 

trix Q, and real scalar 0 ≤ α ≤ 1 satisfying that 

[
Q S 

∗ Q 

]
≥ 0 , the 

following inequality holds: 

− 1 

α
x T 1 Qx 1 − 1 

1 − α
x T 2 Qx 2 ≤ −

[
x 1 
x 2 

]T [
Q S 
∗ Q 

][
x 1 
x 2 

]
. 

Lemma 2.3. [32] . For the given matrices D, E and F with F T F ≤ I and 

positive scalar ε > 0, the following inequality holds: 

DF E + (DF E) T ≤ ε DD 

T + ε −1 E T E. 

3. Main results 

In this section, by using delay partitioning approach, we will 

derive new delay-dependent passivity criteria for system (4) with 

mixed time-varying delays. 



Download English Version:

https://daneshyari.com/en/article/5499546

Download Persian Version:

https://daneshyari.com/article/5499546

Daneshyari.com

https://daneshyari.com/en/article/5499546
https://daneshyari.com/article/5499546
https://daneshyari.com

