
Chaos, Solitons and Fractals 103 (2017) 123–130 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

A space-time fractional derivative model for European option pricing 

with transaction costs in fractal market � 

Lina Song 

School of Mathematics, Dongbei University of Finance and Economics, Dalian 116025, China 

a r t i c l e i n f o 

Article history: 

Received 5 March 2017 

Revised 29 April 2017 

Accepted 30 May 2017 

Keywords: 

Fractional differential equation 

Option pricing 

Approximate solution 

Transaction cost 

a b s t r a c t 

From the point of view of fractional calculus and fractional differential equation, the work handles Euro- 

pean option pricing problems with transaction costs in fractal market. Under the definition of the mod- 

ified Riemman-Liouville fractional derivative, the pricing model based on a space-time fractional patrial 

differential equation is presented by the replicating portfolio, containing the Hurst exponent taken as the 

order of fractional derivative. And then, European call and put options are constructed and calculated by 

the enhanced technique of Adomian decomposition method under the finite difference frame. The frac- 

tional derivative model is finally tested by the data from the option market. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Market friction exists in the real financial world. The existence 

of transaction costs relates the number of hedging and the price 

of options. The pricing models with transaction costs are impor- 

tant improvements for the classical Black-Scholes model. As early 

as 1985, Leland [1] gave a technique to replicate option returns 

in the presence of transaction costs. In 1992, Boyle and Vorst 

[2] took transaction costs into account and extended the Cox- 

Ross-Rubinstein binomial option pricing model. The model can be 

expressed by the Black-Scholes model with a modified volatility. 

Davis et al. [3] priced European options with proportional trans- 

action charges based on a model similar to Black-Scholes one. 

With transaction costs, Barles and Soner [4] derived a nonlin- 

ear Black-Scholes equation with an adjusted volatility. Considering 

transaction costs and the risk from a volatile portfolio, Kratka de- 

rived a mathematical pricing model [5] . Afterwards, Janda ̌cka and 

Šev ̌covi ̌c [6] extended the classical Black-Scholes equation and Le- 

lands equation to a new model for pricing derivative securities un- 

der both transaction costs and the risk from the unprotected port- 

folio. 

A large amount of researches have found that time series have 

long-range dependence and the market returns display scaling 

properties. That the financial market has fractal character is an 

important discovery and provides a new perspective for the the- 

oretical researches of financial derivatives. In a fractal market, the 
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fractional Black-Scholes models [7–9] are deduced by replacing the 

standard Brownian motion involved in the classical model with 

fractional Brownian motion. Further, Wang et al. [10,11] obtained a 

option pricing model with transaction costs in the fractional ver- 

sion of the Merton model. Gu et al. [12] deal with the option 

pricing with transaction costs by a fractional sub-diffusive Black- 

Scholes model. Liu et al. [13] proposed a pricing formula for the 

European option with transaction costs and provided an approxi- 

mate solution of the nonlinear Hoggard-Whalley-Wilmott equation. 

Zhang et al. [14] solved the pricing problem of geometric average 

Asian option with transaction costs under fractional Brownian mo- 

tion. Xiao et al. [15] used the sub-fractional Brownian to construct 

the warrants pricing model with transaction costs. 

The above-mentioned models made great progress and coverd 

the gap of the classical Black-Scholes model, but these equations 

are still ones with integer-order derivatives. Comparing with these 

equations, the fractional differential equations provide an excel- 

lent instrument for description of memory and hereditary prop- 

erties of various materials and processes. The introduction of frac- 

tional differential equation into the financial theory provides a new 

idea and tool for the researches of pricing theory. Wyss [16] pre- 

sented the fractional Black-Scholes equation with a time-fractional 

derivative to price European call option. Cartea et al. [17] de- 

duced the space-fractional diffusion models of option prices under 

three special processes of FMLS, CGMY and KoBoL in markets with 

jumps and priced barrier option FMLS model. Jumarie [18,19] de- 

rived the time and space-time fractional Black-Scholes equations 

and gave optimal fractional Merton’s portfolio. Based on Jumarie’ 

ideas, Liang et al. [20,21] gained a Black-Scholes model with time 

and space fractional derivatives. On the basis, Marom et al. [22] , Xi 
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et al. [23] , Song et al. [24] and Chen et al. [25] employed analyti- 

cal and numerical methods to solve these fractional option pricing 

models. As far as we know, the study on the fractional derivative 

model with transaction costs is few. The aims of the work is to 

establish and solve the space-time fractional pricing model in the 

presence of transaction costs and testy the practicability of the re- 

sults by the real data. 

The paper has been organized as follows. In Section 2 , the defi- 

nition and properties of the modified Riemmna-Liouville derivative 

are introduced and the space-time fractional derivative model of 

option pricing is derived. In Section 3 , the semi-analytical solutions 

of fractional model are solved by the enhanced technique and the 

finite difference method. In Section 4 , fractional derivative model 

is tested by the data. Conclusions and discussions are presented in 

Section 5 . 

2. Fractional derivative model 

In the Section , the space-time fractional Black-Scholes equation 

for European option pricing with transaction costs is derived under 

the definition of modified Riemmna-Liouville derivative. 

2.1. Modified Riemmna–Liouville derivative 

The modified fractional derivative is proposed by Jumarie to 

cover some shortages involved in the classical Riemann-Liouville 

derivative. Reviewing the literatures [18,19] , the definition and 

main properties of the modified fractional derivative are described, 

as follows. 

Definition 2.1 ( [19] (Riemann–Liouville definition revisited)) . (i) 

Assume that f ( x ) is a constant K . Then its fractional derivative of 

order α is 

D 

α
x K = 

{
K 

�(1 −α) 
x −α, if α ≤ 0 , 

0 , if α > 0 . 
(1) 

(ii) Assume that f ( x ) is not a constant. Then its fractional deriva- 

tive of order α is 

D 

α
x f (x ) 

= 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 
�(−α) 

∫ x 
0 (x − ξ ) −α−1 ( f (ξ ) − f (0)) dξ , if α < 0 , 

1 
�(1 −α) 

d 
dx 

∫ x 
0 (x − ξ ) −α( f (ξ ) − f (0)) dξ , if 0 < α< 1 , 

( f (α−n ) (x )) (n ) , if n ≤ α< n + 1 , n ≥ 1 . 

(2) 

Where Gamma function �(z) = 

∫ ∞ 

0 τ z−1 exp (−τ ) dτ . Especial for a 

positive integer n , �(n ) = (n − 1)! . 

Under the modified Riemann–Liouville definition, Jumarie of- 

fered a generalized Taylor expansion on the single variable and 

multi-variable functions. 

Proposition 2.1 ( [19] ) . Assume that the continuous function f : R → 

R, x → f ( x ) has fractional derivative of order k α, for any positive inte- 

ger k and any α, 0 < α ≤ 1, then the following equality holds, which 

is 

f (x + h ) = 

∞ ∑ 

k =0 

h 

(αk ) 

�(1 + k ) 
f (αk ) (x ) , 0 < α ≤ 1 , (3) 

where f ( αk ) ( ·) is the derivative of order αk of f ( x ) . 

Proposition 2.2 ( [19] ) . Multi-variable fractional Taylor’s series 

f (x + ξ , y + η) = E α(ξαD 

α
x ) E α(ηαD 

α
y ) f (x, y ) . (4) 

Where E α is a Mittag-Leffler function and E α(z) = 

∑ ∞ 

k =0 
z k 

�(αk +1) 
. 

In the approximation of order 2 α, this series provides the 

equality 

f (x + ξ , y + η) ∼= 

f (x, y ) + 

1 

�(1 + α) 
( f (α) 

x (x, y ) ξα+ f (α) 
y (x, y ) ηα) 

+ 

1 

�(1 + 2 α) 
( f (2 α) 

x (x, y ) ξ 2 α + f (2 α) 
y (x, y ) η2 α) 

+ 

1 

(�(1 + α)) 2 
f (2 α) 
xy (x, y ) ξαηα. (5) 

As a direct application of the fractional Taylors series, Jumarie 

gave the following corollaries. 

Corollary 2.1 ( [19] ) . The following equalities hold, which are 

D 

αx γ = �(γ + 1)�−1 (γ + 1 − α) x γ −α, γ > 0 , 

(u (x ) v (x )) (α) = u 

(α) (x ) v (x ) + u (x ) v (α) (x ) , 

( f [(x )]) (α) = f ′ u u 

(α) (x ) = f αu (u )(u 

′ (x )) (α) . (6) 

Corollary 2.2 ( [19] ) . Assume that f ( x ) and x ( t ) are two R → R func- 

tions which both have derivatives of order α, 0 < α ≤ 1, then one has 

the chain rule 

f (α) 
t (x (t)) = �(2 − α) x α−1 f (α) 

x (x ) x (α) (t) . (7) 

2.2. Mathematical deduction 

In the work, the replicating technique is adopted to establish 

fractional derivative model. The following assumptions are made 

in financial market with transaction costs. 

I The change of the value for the replicating portfolio �t in 

[ t , t + dt ] is subject to the fractional differential equation 

d H �t = X 1 (t)(dS t ) 
H + X 2 (t) d H D t . (8) 

Where S t and D t denote the price of underlying asset and the risk- 

less bond, respectively. X 1 (t) = X 1 (t, S t ) and X 2 ( t ) are the corre- 

sponding shares. H ∈ [0, 1] is Hurst exponent. When 1/2 < H ≤
1, the time sequence has long range dependence or long mem- 

ory. When H = 1 / 2 , the time sequence can be described by ran- 

dom walks. When 0 < H < 1/2, the time sequence shows the anti- 

permanence character. 

The bond D is risk-less during the time dt , then it satisfies the 

following equality according to Refs. [20,21] , 

d H D t = rD t (dt) H . (9) 

Here, the form ( dt ) H comes from Refs. [18,19] , where Jumarie ex- 

tended the Maruyamas notation for Brownian motion b ( t, α) and 

introduced db(t, α) = σw (t)(dt) α, and further gave the following 

Lemma. 

Lemma 2.1 ( [19] ) . Let f ( t ) denote a continuous function, then the so- 

lution of dx = f (t)(dt) α, x (0) = x 0 is defined by the equality ∫ t 

0 

f (τ )(dτ ) α = α

∫ t 

0 

(t − τ ) α−1 f (τ ) dτ, 0 < α ≤ 1 . (10) 

Integration with respect to ( dt ) α and its application can refer to 

Refs. [18,19] . 

II Transaction cost is a direct cost due to trading and it is the 

fixed proportion c of the trading amount for the underlying. It is 

expressed as 

Cost = cS t | νt | , (11) 

where νt denotes the shares of the underlying that are bought ( νt 

> 0) or sold ( νt < 0) at the price S t . 

III Based on Refs. [20,21] , the price S t of the underlying asset fol- 

lows the fractional exponential equation 

(dS t ) 
H = μS H t (dt) H + σ S H t dB H (t) . (12) 
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