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a b s t r a c t 

In this paper, we consider the existence of periodic solutions for discrete time periodic time-varying 

coupled systems on networks (DPTCSN). Some novel sufficient conditions are obtained to guarantee the 

existence of periodic solutions for DPTCSN, which have a close relation to the topology property of the 

corresponding network. Our approach is based on the continuation theorem of coincidence degree the- 

ory, generalized Kirchhoff’s matrix tree theorem in graph theory, Lyapunov method and some new anal- 

ysis techniques. The approach is applied to the existence of periodic solutions for discrete time Cohen–

Grossberg Neural Networks (CGNN). Finally, an example and numerical simulations are provided to illus- 

trate the effectiveness of our theoretical results. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Complex networks are all around us in the real world now- 

days. Discrete time coupled systems on networks as a mathemat- 

ical framework could describe many complex networks in science 

and engineering, such as complex biological systems, neural net- 

works, chemical systems, etc. [1–4] . On the other hand, periodic 

phenomena exist widely in biological systems such as the seasonal 

effects of weather, food supplies, etc., as well as electronic systems 

and neural networks. In this paper, we investigate the model of 

discrete time periodic time-varying coupled systems on networks 

(DPTCSN) as follows. 

x i (n + 1) = f i 
(
x i (n ) , n 

)
+ 

l ∑ 

j=1 

b i j (n ) H i j 

(
x j (n ) 

)
, i ∈ L , n ∈ N , (1) 

where f i : R 

m i × N → R 

m i are continuous functions satisfying 

f i (·, n ) = f i (·, n + ω) ( ω ∈ Z 

+ ), b ij ( n ) represent the ω-periodic time- 

varying coupling strength, i.e. b i j (n ) = b i j (n + ω) and H i j 

(
x j 
)

: 

R 

m j → R 

m i stand for normalized interference functions. 

Exploring the global dynamics of DPTCSN is generally a chal- 

lenging and difficult task as the following list of possible compli- 

cations illustrates. Firstly, structural complexity: the global dynam- 

ics of DPTCSN do not only depend on every vertex system but also 

rely on the topology property of the networks structural. Secondly, 
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dynamical complexity: every vertex could be described by nonlin- 

ear difference equations. It is well known that, compared with the 

continuous time systems, the discrete time ones are more difficult 

to deal with. Usually, some simple difference equations can always 

produce very complicated dynamics. Thirdly, connection diversity: 

the links between vertices could have different weights and the 

weight could be changing over time. Among the global dynamics 

behavior of DPTCSN, periodicity is the main one. In fact, the ex- 

istence of a periodic solution as a similar character played by the 

equilibrium of the autonomous systems is a very basic and impor- 

tant issue in the study of DPTCSN. Motivated by the above discus- 

sions, investigated the existence of periodic solutions for DPTCSN is 

a splendid work and some new methods should be recommended. 

Lots of approaches are used to investigate periodic solutions 

including many fixed point theorems, the upon and lower solu- 

tion method, etc. Recently, with the help of a powerful technique 

which is the continuation theorem of coincidence degree theory, 

a lot of good results concerned with the existence of periodic 

solutions for discrete time systems and continuous time systems 

are obtained (see Refs. [5–10] and the references therein). How- 

ever, how to acquire the priori estimate of unknown solutions to 

the equation Lx = λNx is still a difficult issue and many schol- 

ars obtain the priori bounds by employing the inequality | x (t) | ≤
| x (t 0 ) | + 

∫ ω 
0 | ̇ x (t ) | d t and matrix’s spectral theory in the previous 

literatures. But, applying these previous approaches to acquire the 

priori estimate of unknown solutions to the equation Lx = λNx 

for DPTCSN is very difficult due to its inherently difficulties dis- 

cussed above. Fortunately, Li and Shuai in [11] , use graph theory 
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method to investigate the global-stability problem for coupled sys- 

tems of differential equations on networks. Based on the method 

in [11] , many scholars have acquired lots of results about stability 

for different coupled systems, such as discrete time coupled sys- 

tems [4,12] , stochastic coupled systems [13,14] , and delay coupled 

systems [15,16] , etc. However, to the authors’ knowledge, few peo- 

ple use this technique to investigate the existence of periodic solu- 

tions for DPTCSN. The main contribution and novelties of the cur- 

rent work are as follows. 

1. Some new techniques based on Lyapunov method, generalized 

Kirchhoff’s matrix tree theorem in graph theory and analysis 

skills for the priori estimate of unknown solutions to the equa- 

tion Lx = λNx are provided. 

2. By employing the continuation theorem of coincidence degree 

theory, Lyapunov method and generalized Kirchhoff’s matrix 

tree theorem in graph theory, some sufficient conditions are 

obtained which have a close relation to the topology property 

of the network’s structure. 

The tree of this paper is the following. In Section 2 , some useful 

notations and basic preliminaries are given. In Section 3 , some suf- 

ficient conditions for the existence of periodic solutions of DPTCSN 

are obtained. In Section 4 , our approach is applied to discrete time 

Cohen–Grossberg Neutral Networks (CGNN). In Section 5 , an exam- 

ple and numerical simulations are given to show the effectiveness 

and feasibility of our results. Finally, conclusions are presented in 

Section 6 . 

2. Preliminaries 

In this section, we shall summarize some useful notations, basic 

concepts and lemmas in the following which will be used through- 

out this paper. 

2.1. Notations 

Throughout this paper, we denote ω a positive integer, and I ω = 

{ 0 , 1 , · · · , ω − 1 } . Let � f (n ) = f (n + 1) − f (n ) , L = { 1 , 2 , · · · , l} , 
N = { 0 , 1 , 2 , · · · } , R 

1 + = [0 , + ∞ ) , and Z 

+ = { 1 , 2 , · · · } . Write f = 

max 
n ∈ I ω 

f (n ) , f = min 

n ∈ I ω 
f (n ) and 

ˆ f = 

1 
ω 

∑ ω−1 
n =0 f (n ) . Let m = 

∑ l 
i =1 m i , 

m i ∈ Z 

+ . Set R 

n and R 

n ×m denote n –dimensional real space and 

n × m -dimensional real matrix space, respectively. The transpose 

of vectors and matrices is denoted by superscript “T”. For vec- 

tor y = (y 1 , y 2 , · · · , y n ) T ∈ R 

n , | y | denotes the Euclidean norm | y | = 

( 
∑ n 

i =1 y 
2 
i 
) 1 / 2 . Denote by C(R 

d × N ; R 

1 + ) the family of all real-valued 

nonnegative functions V ( x, n ) denoted on R 

d × N such that they are 

continuously in x and n . Other notations will be explained where 

they first appear. 

2.2. Graph theory 

We introduce some basic concepts on graph theory [17,18] . A di- 

rected graph or digraph G = (H, E) contains a set H = { 1 , 2 , · · · , l} 
of vertices and a set E of arcs ( i, j ) leading from initial vertex i to 

terminal vertex j . A subgraph H of G is said to be spanning if H
and G have the same vertex set. A digraph G is weighted if each 

arc ( j, i ) is assigned a positive weight a ij ( n ), for n ∈ N . In our con- 

vention, a ij ( n ) > 0 if and only if there exists an arc from vertex j 

to vertex i in G. The weight W (H) of a subgraph H is the product 

of the weights on all its arcs. A directed path P in G is a sub- 

graph with distinct vertices { i 1 , i 2 , ���, i m 

} such that its set of arcs 

is 
{
(i k , i k +1 ) : k = 1 , 2 , · · · , m − 1 

}
. If i m 

= i 1 , we call P a directed 

cycle. A connected subgraph T is a tree if it contains no cycles, di- 

rected or undirected. A tree T is rooted at vertex i , called the root, 

if i is not a terminal vertex of any arcs, and each of the remaining 

Fig. 1. A balanced digraph 
(
G, A (n ) 

)
with 7 vertices. 

vertices is a terminal vertex of exactly one arc. A subgraph Q is 

unicyclic if it is a disjoint union of rooted trees whose roots form 

a directed cycle. Given a weighted digraph G with l vertices, define 

the weight matrix A (k ) = 

(
a i j (n ) 

)
l×l 

whose entry a ij ( n ) equals the 

weight of arc ( j, i ) if it exists, and 0 otherwise. Denote the directed 

graph with weight matrix A ( n ) as 
(
G, A (k ) 

)
. A digraph G is strongly 

connected if for any pair of distinct vertices, there exists a directed 

path from one to the other. A weighted digraph 

(
G, A (n ) 

)
is said to 

be balanced if W (C) = W (−C) for all directed cycles C and n ∈ N . 

Here, −C denotes the reverse of C and is constructed by reversing 

the direction of all arcs in C. 
For example, consider a weighted digraph with 7 vertices (see 

Fig. 1 ), where A ( n ) is a 7 × 7 matrix as ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 a 12 (n ) a 13 (n ) 0 a 15 (n ) a 16 (n ) 0 

a 21 (n ) 0 a 23 (n ) 0 0 0 0 

a 31 (n ) a 32 (n ) 0 a 34 (n ) 0 0 0 

0 0 0 0 a 45 (n ) 0 0 

a 51 (n ) 0 0 0 0 a 56 (n ) 0 

a 61 (n ) 0 0 0 a 65 (n ) 0 a 67 (n ) 

0 a 72 (n ) 0 0 0 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, n ∈ N . 

This digraph is balanced if and only if a 31 (n ) a 23 (n ) a 12 (n ) = 

a 13 (n ) a 21 (n ) a 32 (n ) hods for any n ∈ N . 

For a unicyclic graph Q with cycle C Q , let ˜ Q be the unicyclic 

graph obtained by replacing C Q with −C Q . Suppose that 
(
G, A (n ) 

)
is balanced, then W (Q ) = W ( ̃  Q ) . The Laplacian matrix of ( G, A (n ) ) 

is defined as 

L (n ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∑ 

j � =1 

a 1 j (n ) −a 12 (n ) · · · −a 1 l (n ) 

−a 21 (n ) 
∑ 

j � =2 

a 2 j (n ) · · · −a 2 l (n ) 

. . . 
. . . 

. . . 
. . . 

−a l1 (n ) −a l2 (n ) · · ·
∑ 

j � = l 
a l j (n ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The following result is standard in graph theory, and customarily 

called Kirchhoff’s matrix tree theorem [19] . 

Lemma 1. [19] Assume that l ≥ 2 . Let c i ( n ) denote the cofactor of the 

ith diagonal element of L (n ) , for any n ∈ N . Then 

c i (n ) = 

∑ 

T ∈ T i 
W (T ) , i ∈ L , 
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