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Let M be a closed connected smooth Riemannian manifold with dimM > 2 and let f: M — M be a diffeo-
morphism. In the paper, we show that C! generically, if a diffeomorphism f does not present a homoclinic
tangency then it is weak Lebesgue measure expansive and, as an example, we find a partially hyperbolic
diffeomorphism which is not weak measure expansive. Moreover, for a surface, if a diffeomorphism f has
a homoclinic tangency then there is a diffeomorphism g C' close to f such that g is not weak measure

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Expansivity is very closely related to hyperbolic structure of the
dynamical systems. In fact, Mafié [17] proved that if a diffeomor-
phism belongs to the C! interior of the set of every expansive dif-
feomorphisms then it is quasi-Anosov. Let M be a closed connected
smooth Riemannian manifold with dimM > 2, and let Diff(M) be
the space of diffeomorphisms of M endowed with the C!-topology.
Denote by d the distance on M induced from a Riemannian metric
|| - || on the tangent bundle TM. Let f e Diff(M). We say that f is
expansive if there is § > 0 such that for x, y € M if d(fi(x), fi(y)) <
6 for all i € Z then x = y. From Utz [22] who introduced the notion
of expansiveness firstly, various notions of expansiveness were in-
troduced such as continuum-wise expansive [11], N-expansive [15],
measure expansive [14], weak measure expansive [2], entropy ex-
pansive [6], etc.

Let A be a closed f-invariant set. We say that A is hyperbolic
if the tangent bundle TyM has a Df-invariant splitting ES®E" and
there exist constants C > 0 and 0 < A < 1 such that

[IDxf™ggll < CA™ and || Dxf~"|gu |l < CA"
for all x € A and n > 0. If A =M then f is Anosov. It is known
that if A is hyperbolic then it is expansive. For the probabilistic

view point, Morales and Sirvent [14] introduced a general type of
expansiveness which is called measure expansive. For any x € M
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and any § > 0, we define I';(x, f) = {y e M : d(fi(x). fi(y)) < & for
all i € Z}, called a dynamic §-ball of f. It is clear that if f is expan-
sive then s (x, f) = {x} for all x € M. Let u be a Borel probability
measure of M. Denote by M (M) the set of Borel probability mea-
sures on M endowed with weak* topology. We say that u € M(M)
is atomic if there is a point x € M such that w({x}) # 0. Denote
by M*(M) the set of all nonatomic u € M(M) and M}(M) the set
of all nonatomic invariant u € M(M). It is known that M (M) is
compact. We say that f is p expansive if there is § > 0 such that
w(Cs(x, f)) =0 for all x € M, where § > 0 is called an u expan-
sive constant of f. We say that f is measure expansive if there is &
> 0 such that fis u expansive for all © € M*(M). It is clear that
if f is expansive then it is measure expansive, but the converse is
not true (see [3]).

Ahn et al. [2] introduced weak measure expansiveness which is
a more general notion of measure expansiveness. Let P = {A; c M :
i=1,2,...,n} be a finite collection of subsets M. For any § > 0, we
say that P={A;c M:i=1,2,...,n}is a finite § partition of M if (i)
foreachi=1,2,..., n, A; is measurable, int(A;) # ¢ and diamA; <
3. (ii) A; ﬂA]' = and U?:1 Ai=M.

Since M is compact, for any § > 0 we can make a finite §
partition P={A;:i=1, ...,n} of M such that diamA; < § for all
i=1,2,...,n. For any x € M, we define I'p(x, f) = {y e M : fi(y) €
P(fi(x)) for all i € Z}. The set I'p(x, f) is called the dynamic P-ball
of f centered at x ¢ M and P(x) denotes the element of P contain-
ing x. For any pu € M*(M), we say that f is weak u expansive if
there is § > 0 and a finite §-partition P={A; :i=1,2,...,n} of M
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such that u(Tp(x, f)) =0 for all x € M, where § > 0 is an weak
measure expansive constant of f.

Definition 1.1. We say that f is weak measure expansive if f is
weak p expansive for all u e M*(M).

In [2, Example 2.4], they showed that a homeomorphism f is
weak measure expansive but it is not measure expansive. For con-
venience, we introduce the example. for transpose dot in lemma

Example 1.2 [2], Example 2.4]. Let f: S' — S! be an irrational ro-
tation map. Then f is weak measure expansive. But f is not m ex-
pansive, where m € M*(S!) is the Lebesgue measure on S1.

Proof. Let S' =[0,2m). For any small 0 < § < §/2, let P ={A; C
[0,27):i=1,---,n} be a finite §-partition of [0, 2) such that
each A; is a half-open interval with diamA; < 8. For any x € S!,
let x € A; for some j e {1,2,...,n}. We show that I'p(x, f) = {x}.
For this, take y € A; with x#y such that x < y. Put d(x,y) =
€ > 0. Since every rotation map is an isometry, we know d(x,y) =
d(fi(x), fi(y)) for all i e Z. Take an end point z € A, for some
ke {1,2,...,n} and open ball B.j,(z) containing z. Since every orbit
of f is dense, there is | € Z such that fl(x) € A,_4 N Be2(2). Since f
is an orientation preserving map and an isometry, f{(y) must be an
element of A;. This means I'p(x, f) = {x} and so u(Ip(x, f)) =0
for all i € M*(S'). Thus f is weak measure expansive.

On the other hand, let m € M*(S!) be the Lebesgue measure on
S!. Since f is an isometry, we know that for every x e S!

T5() ={y eS" 1 d(f'(x), fi(y)) < 8 for i e Z} = Bs|«].
where Bs[x] is the closed §-ball centered at x. Then we have
m(Is(x)) = m(B;[x]) > 0.

This means that f is not m-expansive. O

A diffeomorphism f exhibits a homoclinic tangency if there is a
hyperbolic periodic point p whose invariant manifolds W5(p) and
WHY(p) have a non-transverse intersection. The set of C' diffeo-
morphisms that have a homoclinic tangency will be denoted H7.
[13] proved that every diffeomorphism f e Diff(M) \ HT is entropy
expansive.

Weak measure expansiveness is not equal to entropy expan-
siveness. It is well known that the identity map is entropy ex-
pansive, but it is not weak measure expansive which was proved
by [2, Lemma 2.5]. Indeed, let X be a compact connected met-
ric space and f: X — X be the identity map. For any 6 > 0, let
P={A{.A;, ..., Ap} be a finite §-partition of X. Then I'p(x, f) =
P(x) = A; for some ie {1,...,n}. Choose A; € P such that u(4;) >
0. This means u(I'p(x, f)) > O for all x € A;. Thus if f: X — X is the
identity map then it is not weak measure expansive.

We say that a f-invariant closed set A admits a dominated split-
ting if the tangent bundle Ty M has a continuous Df-invariant split-
ting E®F and there exist constants C > 0 and 0 < A < 1 such that
IDf™ eIl - 1D p(pgon I < CAT
for all x € A and n > 0. The set A is partially hyperbolic if there is
a dominated splitting E®F of To M such that either E is contracting
or F is expanding. We say that a compact f-invariant set A c M is
strongly partially hyperbolic if the tangent bundle Ty M has a domi-
nated splitting ES®E‘®EY and there exist C > 0 and 0 < A < 1 such
that

(a) for all v e E5, u € E, we have
IDxf" W) - 1D gy f )| < CAM[w]] - Jlu

forallx e A, n >0, and
(b) for all w € E%, u € E¢, we have

1D fn oy ST W) - DT @) < CAT [ - [lul|
forall x e A, n >0,

l

Note that if A is hyperbolic for f then it is strongly partially hy-
perbolic and E€ is empty. A subset G c Diff(M) is residual if it con-
tains a countable intersection of open and dense subsets of Diff(M).
A dynamic property is Clgeneric if it holds in a residual subset of
Diff(M). Note that there is a residual set G c Diff(M) such that for
any fe GNHT, fis not entropy expansive (see [13, Remark 1.1]).
Recently, Pacifico and Vieitez [19] proved that there is a residual
subset G of Diff(M) \ HT such that for any Borel probability mea-
sure u which is absolutely continuous with respect to Lebesgue,
f € G is u-expansive. From these facts, we have the following.

Theorem A. There is a G residual subset of Dif f(M) \ HT such
that for any Borel probability measure p which is absolutely continu-
ous with respect to Lebesgue, f € G is weak -expansive.

Now, we consider following problem: If a diffeomorphism f is
partially hyperbolic which is far away from homoclinic tangencies
then is it weak measure expansive?

Let M=T3 and let f: T3 — T3 be a diffeomorphism. In [16,
Theorem B], Mafié constructed a robustly nonhyperbolic transitive
diffeomorphism f € Diff(T3). By [10, Theorem B], every robustly
transitive diffeomorphism f on T3 is partially hyperbolic. Thus we
can find a partially hyperbolic diffeomorphism f on T3 such that f
is robustly nonhyperbolic transitive. Denoted by R7 (T3) the set of
all robustly transitive diffeomorphism on T3.

Theorem B. Let f € RT(T3). Then there is g C' close to f such
that g is not weak measure expansive.

2. Proof of Theorems
2.1. Proof of Theorem A

For a closed f-invariant set A, it admits a dominated splitting.
Then if the dominated splitting can be written as the following

IWM=E10E,®---®E®E 18 - -®E,
then we say that the sum is dominated if for all i the sum
(E1o0E - @FE) @ (Ep 0E20-E)

is dominated. Note that the decomposition is called the finest dom-
inated splitting if we can’t decompose in a non-trivial way sub-
bundle E; appearing in the splitting. In the above, if E; = ES and
E, =E" then A is partially hyperbolic. For a partially hyperbolic
diffeomorphism, Burns and Wilkinson [7] showed the following
lemma (see [19, Proposition 3.2]).

Lemma 2.1. Let A be a compact f-invariant set with a partially hy-
perbolic splitting,

I\WM=E®E®- - -®E &E"

Let ES = EQE{ @ - ®Ef and E" =Ef @ --- ® E{ @ E" and con-
sider their extensions ESi and E* to a small neighborhood of A.
Then for any € > 0 there exist constants R > r > r; > 0 such
that for any x € A, the neighborhood B(x, r) is foliated by foliations
WU (x), W5 (x), WSi(x) and Wi(x)(i=1,...,k) such that for each
o e {uy, s, (cs, i), (cu, i)} the following properties hold.

(a) Almost tangency of invariant distributions. For each y € B(x, r), the
leaf W2 (y) is Cl, and the tangent space T,Wy? (y) lies in a cone of
radius € about E° (y). . R o

(b) Coherence. W subfoliates W' and W subfoliates W' for each
iefl,... .k}

(¢) Local invariance. For each y € B(x, r) we have f(WJ (y.11)) C
Wfff(x) (@) and [fYWZ @y, m))C WF—l(x)(f71 ¥)), where
WX‘T (y,r1) is the connected components of WX‘T W) NB@y,r)
containing y.
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