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a b s t r a c t 

A periodic predator-prey model has been introduced in [5] to study the effect of water level on persis- 

tence or extinction of fish populations living in an artificial lake. By using the continuation theorem of 

Mawhin’s coincidence degree theory, the authors give sufficient conditions for the existence of at least 

one positive periodic solution. In this paper we study the problem in the general case. We begin by 

analyzing the invariance, permanence, non-persistence and the globally asymptotic stability for the sys- 

tem. Most interestingly, under additional conditions, we find that the periodic solution obtained in [5] 

is unique. Finally, in order to make the model system more realistic, we consider the special case when 

the periodicity in [5] is replaced by almost periodicity. We obtain conditions for existence, uniqueness 

and stability of a positive almost periodic solution. The methods used in this paper will be comparison 

theorems and Lyapunov functions. An example is employed to illustrate our result. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The dynamical relationship between predators and their prey 

has long been of the dominant themes in ecology [2,10,11,15–17,27] . 

Generally, all prey-predator models are derived from the following 

model system: {
˙ x = f (x ) − g(x, y ) y, 
˙ y = eg(x, y ) y − dy. 

(1) 

where x and y denote prey and predator densities at time t , re- 

spectively, f ( x ) stands for the prey growth rate in the absence of 

predators, g ( x, y ) denotes the average feeding rate of a predator 

(i.e., the functional response of predators to prey density). Parame- 

ters e and d denote the efficiency of predators to convert the con- 

sumed prey into predator’s new offspring and predator mortality 

rate, respectively. 

The functional response is usually assumed to increase with 

prey density, and decrease (or not change) with predator density, 

this can be classified as: (a) prey dependent, when prey density 

alone determines the response; (b) predator dependent, when both 

predator and prey populations affect the response, and (c) ratio de- 

pendent when the feeding rate is determined by the ratio of prey 
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density to predator density. A historical account of biological rele- 

vance of functional response is available in [27] . 

Naturally, environmental periodicity and fluctuations have great 

influence on the interaction between prey and predator species, 

these characteristics lead us to propose a change in the prey- 

predator model (1) aiming at the inclusion of the environmental 

fluctuations in this system of differential equations. There are some 

literature where authors have considered the non-autonomous or- 

dinary differential equation models to study the models with sea- 

sonally varying parameters (see [4,6,9,12,25,28,31,32] and the ref- 

erences therein). More and more researchers begin to investigate 

ecological systems with random perturbation subjected to environ- 

mental noise, for example, in [7,8] , the authors show that the ran- 

dom fluctuations play a crucial role in population dynamics which 

can affect significantly the time behavior of prey-predator systems 

(see also [29,30] ). 

Recently, in [5] , the authors proposed a new functional re- 

sponse in order to explain the influence of changing water levels 

fluctuations in the Pareloup lake on predator-prey interactions. The 

Pareloup lake situated in the south of France is one of the major 

Hydro Electric Projects in the Country. In the proposed model, the 

authors used the population of Roach species (Gardon in French) 

as prey and the Pike species (Brochet in French) as predator. Pike 

and Roach are the most important species in this lake. This func- 

tional response is based on the following general considerations. 
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When a predator attacks a prey, it has access to a certain quantity 

of food depending on the water level. When the water level is low, 

during the autumn, the predator is more in contact with the prey, 

and the predation increases. Conversely, when the water level is 

high, in the spring, it is more difficult for the predator to find a 

prey and the predation decreases. It is assumed that the accessi- 

bility function r ( t ) for the prey is continuous and 1-periodic, the 

minimum value r 1 is reached in spring and the maximum value 

r 2 is attained during autumn. The predator needs a quantity γ B as 

food, but it has access to a quantity 

g(x, y ) = 

r(t) x 

y + D 

, 

where D measures the other causes of mortality outside the pre- 

dation. If 

g(x, y ) = 

r(t) x 

y + D 

≥ γB , 

then the predator will be satisfied with the quantity γ for his food. 

Otherwise, that is, if 

g(x, y ) = 

r(t) x 

y + D 

≤ γB , 

the predator will content himself with 

g(x, y ) = 

r(t) x 

y + D 

. 

Consequently, the quantity of food received by one predator is 

min 

(
r(t) x 

y + D 

, γB 

)
. 

The authors in [5] studied the following non-autonomous predator- 

prey model ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ G (t) = γG G (t) − m G G 

2 (t) − min 

(
r(t ) G (t ) 

B (t) + D 

, γB 

)
B (t) , 

˙ B (t) = e B min 

(
r(t) G (t) 

B (t) + D 

, γB 

)
B (t) − m B B (t) , 

G (0) = G 0 > 0 , B (0) = B 0 > 0 , 

(2) 

where G ( t ) and B ( t ) represent the densities of the prey and the 

predator, respectively, at time t. m G and m B are, respectively, the 

consumption rate of biomass by metabolism of prey and predator. 

γ G and γ B denote the maximum consumption rate of resource by 

the prey and predator, respectively. e B is the conversion rate. By us- 

ing Gaines and Mawhin’s continuation theorem of coincidence de- 

gree theory [20] , the authors have established sufficient conditions 

for the existence of positive periodic solutions of the predator-prey 

system (2) . Such a solution describes an equilibrium situation con- 

sistent with the variability of environmental conditions and such 

that both populations survive. The trajectories in the phase plane 

of these solutions of the non-autonomous system take the place of 

the equilibria points of the autonomous system. see [5,24,26] for 

more details). The existence of periodic solutions and their stability 

for a delayed version of system (2) are studied in [22] . In [23] the 

authors study the predator-prey model (2) with harvesting terms. 

They show that the conditions that guarantee the multiple positive 

periodic solutions depend on the harvesting terms. In order to in- 

corporate the mechanism of diffusion into the populations model, 

the author in [24] proposed a reaction-diffusion model to study 

the effect of diffusion and water level on the persistence of the 

two specifically fish populations. Through the proposed models, it 

is possible to verify that the change in the water level is directly 

associated with the variation of the number of fish species present 

in the lake. 

In a more general case, when we consider the effects of en- 

vironmental factors, almost periodicity is sometimes more realistic 

and more general than periodicity. Because there is no a priori rea- 

son to expect the existence of periodic solutions. We assume here 

that the predation rate is almost periodic function. We obtain suf- 

ficient conditions for the existence of a unique globally attractive 

positive almost periodic solution of system (2) . 

The contents of the paper are as follows. In Section 2 , we study 

in details the dynamics of the general non-autonomous case of 

(2) and establish sufficient conditions for the boundedness, perma- 

nence, predator extinction, and globally asymptotic stability. Under 

some additional conditions, we conclude that the periodic solu- 

tion obtained in [5] is unique and is globally asymptotically stable. 

Section 3 is for the case when the predation rate is almost peri- 

odic. We provide sufficient conditions for the existence and glob- 

ally asymptotic stability of a unique positive almost periodic solu- 

tion of system (2) . We end up by simulation results and concluding 

remarks. 

2. General case 

In this section, we assume that r ( t ) is continuous and bounded 

above and below by positive constants r 1 and r 2 respectively. We 

shall explore the dynamics of the non-autonomous predator-prey 

system (2) and present some results including the positive invari- 

ance, permanence, predator extinction and the global asymptotic 

stability. 

2.1. Positive invariance and permanence 

For many biological systems, boundedness of solutions and per- 

manence are important. They give biological sense of system. We 

first show that system (2) is well-posed in the sense that for any 

positive initial conditions ( G 0 , B 0 ), there exists a unique solution 

of the system (2) , which remains positive and bounded, and hence 

exists globally. To this end, we establish the following result. 

Let h : ( t, G, B ) → min ( f ( t, G, B ), γ B ). 

Lemma 1. If f is locally lipschitz, then the function h is locally lips- 

chitz. 

Proof. It is easy to see that 

min ( f (t, G, B ) , γB ) = 

f (t, G, B ) + γB − | f (t, G, B ) − γB | 
2 

. 

The form of h with respect to f obviously shows that if f is lo- 

cally lipschitz, then h is locally lipschitz. Hence, local existence and 

uniqueness properties are obtained for the corresponding Cauchy 

problem [14] . �

The state space of (2) remains in the positive octant R 

2 + = 

{ (G, B ) : G ≥ 0 , B ≥ 0 } . Indeed, the set R 

2 + is positively invariant 

since the vector field of (2) is inward on the boundary of ∂R 

2 + . 
Now, we shall prove the permanence of system (2) . We first 

rewrite the system (2) in a simpler form. We suppose that: 

r 2 < min 

(
γB (B 0 + D ) 

G 0 

, 
4 m G γB m B D 

(γG + m B ) 2 

)
. H1 
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