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a b s t r a c t 

We attempt to quantify the intrinsic nonlinear dynamics of thirty international financial markets. Frac- 

tality, chaoticity and randomness are explored during and after the recent global financial crisis. We find 

that most markets exhibited persistent long-range correlations during the crisis, whilst anti-persistent 

patterns are identified after the crisis. Moreover, the nonlinear dynamics in all markets do not exhibit 

chaotic features. Importantly, the degree of randomness has increased in most of markets in the after- 

math of the crisis. Overall, the nonlinear characteristics of the temporal dynamics of the major financial 

markets have been notably modified in the post-crisis period. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Measuring complexity in financial assets is of paramount im- 

portance in order to comprehend their inherent nonlinear dynam- 

ics. Various techniques from statistical mechanics and physics have 

been applied to financial time series in an attempt to capture frac- 

tality, chaos, randomness or mixed dynamics. Without a doubt, 

there is no convincing argument towards the assumption that as- 

set prices or returns exhibit linear dynamics. Measuring long-range 

memory has been investigated via a plethora of studies and meth- 

ods in the literature i.e., through detrended fluctuation analysis 

(DFA) [1] , multifractal detrended fluctuation analysis (MF-DFA) [2] , 

generalized Hurst exponent (GHE) [3] , weighted generalized Hurst 

exponent (wGHE) [4] or a combination of the above [5–18] . Obvi- 

ously, examining the temporal correlation in financial data could 

reveal the nature of the dynamical fluctuations. 

Chaos theory [19] is also appealing in order to understand the 

micro-behavior of agents in financial markets. A chaotic dynam- 

ical system is sensitive to initial conditions, exhibits non-periodic 

movements, and consequently is not predictable in the long run. In 

this regard, several works have been conducted to scrutinize the 

existence of chaos in financial markets. For instance, stock mar- 

kets [7,20,21] , crude oil [22] and currency markets [23–27] have 

been investigated mostly utilizing Hurts and Lyapunov exponents 

[28,29] . In the same vein, measuring entropy could be valuable 
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towards detecting randomness in the underlying processes of fi- 

nancial series. Entropic statistics allow revealing the (a)proximity 

of the trajectories of a system and their inherent randomness. Be- 

cause of their informational content, entropy-based measures were 

recently employed to assess the stability of equity [29–32] , FX 

[33,34] and gold markets [34] accordingly. 

The main purpose of our study is to detect the nature, dimen- 

sionality and direction of complexity in various financial markets 

based on the characterization of their nonlinear dynamics during 

and after the global financial crisis. Specifically, the intrinsic pat- 

terns of the time series employed are quantified via the use of the 

Hurst exponent (HE), the largest Lyapunov exponent (LLE) and the 

Renyi entropy measure. Basically, we attempt to estimate the long- 

range correlation, divergence and randomness of the systems that 

optimally explain the behavior of the investigated markets. Fractal- 

ity, chaoticity and stochasticity are all explored to assess the non- 

linear features associated with each underlying series and its os- 

cillations. In our work, HE is estimated by means of the detrended 

fluctuation analysis (DFA) [1] , LLE is estimated using artificial neu- 

ral networks [26] while the Renyi entropy [35] is computed to 

quantify any existing randomness. 

Overall, we contribute to the relevant literature in the follow- 

ing ways: we describe the inherent characteristics of complex- 

ity in numerous major financial markets by using for the first 

time three different statistical concepts derived from statistical me- 

chanics. Secondly, we assess how temporal dynamics evolved dur- 

ing and after the crisis period; clearly there is a growing inter- 

est on this topic [5,8,22,36,37] . More importantly, we conduct an 

exhaustive analysis involving a very large number of stock, cur- 
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rency and commodity markets, thus significantly enrich the ex- 

isting econophysics literature [5–37] . The rest of our paper is 

sketched as follows: Section 2 describes the implemented meth- 

ods, while Section 3 presents the data and discusses the empirical 

results. Finally, Section 4 concludes. 

2. Methodology 

2.1. Detrended fluctuation analysis (DFA) 

The DFA [1] is capable of detecting long-range dependence in 

nonstationary data. The methodology applied to a signal (series) y 

is described as follows: 

a) Define the suite x N of the cumulative series of the original y i 
fluctuations about its mean: 

x N = 

N ∑ 

i =1 

( y i − ȳ ) (1) 

b) Divide x N into boxes of equal length n . 

c) In each box, fit the local trend of x N by a polynomial P ( n,N ) 

that represents the local trend of the box. In the present study, 

a polynomial of degree one is employed. 

d) For the given n box size, compute the root-mean-squared de- 

trended fluctuation of the signal x N : 

F ( n, N ) = 

√ 

1 

N 

N ∑ 

i =1 

( x i − P (n, N) ) 
2 

(2) 

For each of the available n box size, the last step is repeated to 

obtain the empirical relationship between the overall fluctuation 

F ( n,N ) and the box size n : 

F ( n, N ) ∝ n 

H (3) 

The Hurst exponent H is estimated by running a regression of 

the log( F ( n,N )) upon log( n ). For H = 0.5, the dynamics of the orig- 

inal time series follow a random walk. For 0 < H < 0.5, the series 

are anti-persistent, while on the contrary the series are persistent 

in case 0.5 < H < 1. 

2.2. Largest Lyapunov exponent 

The Lyapunov exponent is basically an indicator of the qualita- 

tive behavior in a dynamical system based on a one-dimensional 

time series analysis. In particular, the Lyapunov exponent allows 

for determining whether a given dynamical system has divergent 

or convergent trajectories. Assume a noisy chaotic system of time 

series x t given by: 

x t = f ( x t−L , x t−2 L , . . . , x t−mL ) + ε t (4) 

where L is the time delay, m is the embedding dimension, ε a noise 

term, f an unknown function used to approximate a chaotic map, 

and t the time script. A noise-free system has zero variance, i.e., 

V ar( ε t ) = 0 . Then, the Lyapunov exponent λ of a noisy chaotic sys- 

tem is estimated as follows [26,38] : 

λ = lim 

M→∞ 

1 

2 M 

log ( v 1 ) (5) 

where v 1 is the largest eigenvalue of the matrix T ′ 
M 

T M 

where T M 

is 

given in [26,38] : 

T M 

= 

∏ M−1 

t=1 
J M−1 (6) 

We denote M ≤ T as the block-length of equally spaced evalua- 

tion points, and J as the Jacobian matrix of the chaotic map f . The 

Jacobian J at a starting point x 0 is expressed as follows: 

J t ( x 0 ) = 

d f t ( x ) 

dx 
| x 0 (7) 

A multilayer feed-forward neural network trained via a gradi- 

ent descent algorithm [26,38] can be employed to approximate the 

unknown chaotic map f : 

x t ≈ α0 + 

∑ q 

j=1 
α j A 

(
β0 , j + 

∑ m 

i =1 
βi, j x t−iL 

)
+ ε t (8) 

where q is the number of hidden layers, αj are the layer connec- 

tion weights, α0 the network bias and A the sigmoid function as 

in [26,38] . The triplet ( L, m, q ) is set at high values and varies un- 

til the largest Lyapunov exponent (LLE) is obtained following the 

method presented in [38] . Evidently, when λ≥ 0 the underlying 

time series possess incorporates chaotic dynamics, while instead 

when λ< 0 we have an indication of convergence between close 

trajectories. In the latter case classic attractors exist. 

2.3. Renyi entropy 

Renyi entropy [35] is employed to measure the degree of ran- 

domness in each market. The most prominent feature of this spe- 

cific entropic estimator is its robustness to heavy-tailed distribu- 

tions that occur in real-world complex dynamical systems such 

as those described by financial time series [39] . For a time series 

{ x t } n t=1 
the Renyi entropy is given as: 

R q ( x ) = 

1 

1 − q 
log 

(∑ n 

i =1 
p q 

i 

)
(9) 

where q ≥ 1 and q 
 = 1 and p i is the discrete probability such that ∑ 

i 

p i = 1 . The parameter q is a diversity index of different prob- 

abilities. In particular, a high order- q allows focusing on extreme 

events with low probability. Otherwise, a low order- q describes 

regular events with higher probability. As we are not interested in 

measuring entropy at different scales by varying the q and not fo- 

cusing on singular events, the parameter q is set to 2 [35] . 

3. Data and empirical results 

We consider the daily prices for thirty international equity, cur- 

rency and commodity markets for a period spanning 15 January 

2007 to 19 December 2016. In particular, we examine the stock 

markets of USA, UK, France, Germany, Japan, Canada, China, Spain, 

Greece, Belgium, Switzerland, Portugal, Italy and Taiwan, the cur- 

rency markets for US/Euro, US/UK, US/CHF, and the commodity se- 

ries of the Crude oil, Harbor, Natural gas, Copper, Platinum, Silver, 

Gold, Palladium, Corn, Coffee, Cocoa, Cotton and Wheat. The data is 

obtained from Datastream International database. The investigated 

sample period is classified in two disjoint groups: the crisis period 

i.e., 15 January 2007 to 31 December 2010, and the post-crisis sam- 

ple namely 1 January 2011 to 19 December 2016. We conduct our 

analysis based on the first-difference of the logarithm of the prices 

for all markets. 

Table 1 depicts the estimated Hurst (HE) and largest Lyapunov 

exponents (LLE) as well as the Renyi entropy (RE) measure for all 

markets and periods involved. We observe that all HEs are higher 

than 0.5 during the crisis, except those of silver, gold, coffee and 

cocoa. Instead, most of the calculated HEs obtain a value below 

0.5 after the crisis except for Hang Seng, ATHEX, crude oil, gold 

and cotton markets. Furthermore, we find that the estimated HEs 

of PSI, TAIEX, harbor, silver and corn are slightly above 0.5. Sub- 

sequently, while the majority of the markets demonstrate a per- 

sistent long-range behavior during the crisis, yet they reveal anti- 

persistent long range correlations after the crisis period. In addi- 

tion, Table 1 shows that all estimated LLE are negative in any pe- 

riod, thereby none of the markets exhibits chaotic dynamics. In- 

stead, each one presents convergent trajectories. Finally, all mar- 

kets display low-entropy statistics during the crisis in compari- 

son to the ones after the crisis, perhaps with the exceptions of 
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